
Solutions to Challenges in Calculus

Dayeol Choi
https://dayeolchoi.com/calculus

2022

1 Reviewing Arithmetic

1.1 Units

Challenge 1 (a)

55 ⇥ 3

53
= (5⇥ 5⇥ �5⇥ �5⇥ �5)⇥

3

�5⇥ �5⇥ �5
= 5⇥ 5⇥ 3 = 52 ⇥ 3,

55 ⇥ 3
53

22
=

52 ⇥ 3

22
.

(b) Since density is Mass/Length3, we have

Length5 ⇥ density

Time2
=

Length5 ⇥Mass/Length3

Time2
=

Length2 ⇥Mass

Time2
.

This is the same as Energy.

(c) Only the second expression is valid.

Challenge 2 (a) We do a few check to verify that the equation E = R5⇢/t2 makes sense. Indeed, an
increase in blast radius R is associated with an increase in energy E. If R and time t
were the same, but density ⇢ was higher, then E must have been higher as well. It time
t to reach radius R was smaller, then E must have been smaller. These facts agree with
the equation E = R5⇢/t2.

(b) The radius R of the blast looks to be about 150 meters to me. The time t is given as
0.025 seconds. With ⇢ = 1.2kg/m3, we have

E =
1.55 · 1005m5 · 1.2kg/m3

0.0252s
=

1.55 · 1010m5 · 1.2kg/m3

2.52 · 10�4s

and a value E of about 1.5⇥ 1014kg·m2/s2.

(c)
1.5⇥ 1014 joule

4.2 · 109 = 0.36 · 105 tons of TNT.

Divide by a thousand (103) to get that E is about 36 kilotons.

(d) Looking up the yield at https://en.wikipedia.org/wiki/Trinity_(nuclear_test),
we can see that the yield was actually about 25 kilotons.

1

https://dayeolchoi.com/calculus
https://en.wikipedia.org/wiki/Trinity_(nuclear_test)

1.2 Exponentiation

Challenge 3 (a) Using the fact that (a+ b)(c+ d) = ac+ ad+ bc+ bd, we get

(10 + x)(10 + y) = 10 · 10 + 10 · y + 10 · x+ x · y.

The first three terms are multiples of 10. Therefore,

(10 + x)(10 + y) = 10 · 10 + 10 · y + 10 · x+ x · y = 10 · (10 + x+ y) + xy.

(b) Using the formula obtained from the previous part, with x = 6 and y = 4, we need only
add a zero to the sum 10 + 6 + 4, then add 24 to get 224.

In order to do the multiplication 116 · 114, we use the same formula from part b, except
we switch the ‘10’ with ‘100’:

(10+ x)(10+ y) = 10 · (10+ x+ y) + xy ! (100+ x)(100+ y) = 100 · (100+ x+ y) + xy.

Hence we need only add two zeros to the sum 100 + 16 + 14, and add 16 · 14, which we
already know to be 224, to get 13224.

Challenge 4 (a) If we allocated 0 boxes per song, then 0 unique signatures are possible. If we allocated

1 box per song, then 3 unique signatures are possible: 0 , 1 , and 2 . If we allocated 2

boxes per song, then the possible signatures are 0 0 , 0 1 , 0 2 , 1 0 , 1 1 , 1 2 ,

2 0 , 2 1 , 2 2 . That’s 32 = 9 unique signatures. Therefore, if we allocated 5 boxes
per song, 35 unique signatures are possible; if we allocated 8 boxes per song, then 38

unique signatures are possible.

(b) This is a matter of taking a calculator to calculate various powers of 3. If I use a calculator
to calculate 316, I get about 43 million, which is not enough. If I use a calculator to
calculate 317, I get about 128 million, which is enough. So 17 boxes is the minimum
number of boxes needed.

(c) Let us examine how 127 is expressed in base 10. In base 10, we need to find what is the
largest power of 10 whose multiple fits in 127: that’s 102 = 100. Thus 127 = 1 ·102+
Next, we see what is the largest power of 10 whose multiple fits in 127� 100 = 27: the
answer is 101. Thus 127 = 1 · 102 + 2 · 10 + The remainder is 127 � 100 � 20 = 7,
which is less than 10, so we have

127 = 1 · 102 + 2 · 101 + 7 · 100.

How about expressing 120 in base 60? 602 is much larger than 120, but 2 · 601 120.
Thus the first digit of 120 is base 60 is 2. In fact, we are done, because 2 · 601 = 120.
Thus all powers of 60 that follow, in this case 600 contributes 0. Therefore,

120 = 2 · 601 + 0 · 600.

In part (b), we needed to know what is the smallest power of 3 that is greater than 100
million. This time, we need to know what is the largest power of 3 whose multiple is fits
in 12. Now, 32 = 9 < 12 but 33 = 27 > 12. Thus 32 is the largest power whose multiple
fits in 12. Thus 12 = 1 · 32 + · · · . The remainder is 12� 32 = 3, and so

12 = 1 · 32 + 1 · 31 + 0 · 30.

2

(d) From part (c), we found that 12 = 1 · 32 + 1 · 31 + 0 · 30. Thus 3 is the fewest number of
boxes required to record the 12 di↵erent pitches.

(e) This time, unlike part (b), we want to know what is the smallest power of 3, when
multiplied by 12, will give us a number larger than 100 million. In a calculator, I
get 12 · 314 is about 57 million, which is not enough. However, 12 · 315 is about 172
million. Therefore, we need 3 boxes (to store the starting pitch) and 15 additional
boxes: 3 + 15 = 18 boxes.

(f) In part (b), we found that 17 boxes per song is enough in the original scheme. In part
(e), we found that 18 boxes per song is needed for the modified scheme. Therefore, in
terms of boxes needed, the original algorithm is better, by a total of 100 million boxes.

Even if there were 200 millions songs, the answer would not change; we’d need 18 boxes
per song in the original scheme, compared to the 19 boxes per song in the modified
scheme.

(g) Suppose we wanted to find a song by humming the tunes. It would be very di�cult
to get the exact pitch right. The same goes for getting the exact meter correct. This
algorithm doesn’t require either such information. Less is more.

1.3 Arrays and Datatypes

Challenge 5 (a) This is the same question as Challenge 4 part (a), with 2 instead of 3. A byte is 28, so
8 “boxes” of bits are necessary. Therefore, a byte is 8 bits.

(b) Since 8 = 1 · 23 + 0 · 22 + 0 · 21 + 0 · 20, 4 bits are needed to store the number 8. Since
7 = 1 · 22 + 1 · 21 + 1 · 20, 3 bits are needed to store the number 7.

(c) Since 32768 = 1 · 215, the number 32768 in binary is 1 followed by 15 zeros. Just as
8 = 1 · 23 needs 4 bits to store, the number 32768 = 1 · 215 needs 16 bits to store. Now
16 bits is 2 bytes (8 · 2 = 16), so 2 bytes is su�cient to store 32768.

Since 65536 = 1 · 216, the number 65536 in binary is 1 followed by 16 zeros. The number
65536 = 1 · 216 needs 17 bits to store. Now, 2 bytes is 16 bits, so 2 bytes is not enough
to store the number 65536. We need 3 bytes to store the number 65536.

(d) Because we start counting from 0 (32 0’s), and not from 1. For example, if we started
counting from 0 to 9, that’s ten numbers, not nine. On the other hand, if we started
counting from 1 to 9, that’s nine numbers.

(e) If we want to store the number 231, then we need to store it as an unsigned int. The
number �231 � 1 is a singed number (negative sign) so an unsigned int is out of the
question. However, the number �231 � 1 is too small to store as a signed int, it is not
possible to store this number, unless we can allocated more boxes (bytes) to store it. It
turns out that a long datatype does this, with 64 bits (usually).

(f) The number 0x10000 is 1 · 164. Since each byte can store 16 possible values, we need 5
bytes minimum. Each byte is 8 bits, so 40 bits is necessary to store 0x10000.

(g) Since a gibibyte is 230 bytes, 8 GiB is 8 · 230 = 23 · 230 = 233. A 32 bit address can store
232 possible addresses, so only half of 233 address in a 8 GiB memory is reachable: 50%.
A 64 bit address can store 264 possible addresses, so a 64bit operating system will have
no trouble addressing all 233 address: 100%.

3

Challenge 6 (a) This wouldn’t work because [|c|a|t| |d|o|g| |r|a|m|] could mean the strings “cat”, “dog”,
and “ram”, or it could mean the string ” cat dog ram ”. A space “ ” is a natural part
of a string.

(b)
| 65
0x100000

| 0
0x100001

| 33
0x100002

| 0
0x100003

|.

(c) The number 65 corresponds to “A” and the number 33 corresponds to “!”. So the array
is an array of two strings: [“A”|“!”].

(d) The array of three chars [72|97|116] might be stored as:

| 72
0x100000

| 97
0x100001

| 116
0x100002

|.

But what about memory addresses 0x100003 and beyond? We have no idea, it could be
anything. It might be:

| 72
0x100000

| 97
0x100001

| 116
0x100002

| 0
0x100003

|,

in which case, the device would read “Hat”. Or it could be

| 72
0x100000

| 97
0x100001

| 116
0x100002

| 116
0x100003

| 101
0x100004

| 114
0x100005

| 0
0x100006

|,

which would read as the string “Hatter”. The key idea is that we don’t know what lies
outside, so the result is undefined.

Challenge 7 The statements in (i), (ii), (v), and (vi) are always true. In (iii), there is no way to know a
priori what address array a is stored in. In (iv), we have done a variable declaration for b,
but we haven’t assigned any value to b; thus there is no way we can know what the value of
b is.

Challenge 8 (a) From (i) and (iv), we see that both “x++;” and “++x;” has the e↵ect of increasing the
value of x by 1. However, in (ii), we see that the expression “++x” is resolved before a
value assignment to y, whereas in (iv), we see that the expression “x++” is resolved after
a value assignment to y.

(b) We know that the expression “++x” occurs before an assignment, but we don’t know
whether it occurs before or after arithmetic operations like -, +, or *. This exact result
of this expression is undefined and depending on the compiler, the result might be 0 or
-1. Trying compile this code in my compiler, I get a warning, and a value of �1 for y.
Because results of some expressions in C are undefined in the standard, and left at the
hands of compiler developers, one needs to be careful.

Challenge 9 (a) numbers1[3] is 2 and numbers2[1] is 0x0030004.

(b)

| 0x00
0x100000

| 0x01
0x100001

| 0x00
0x100002

| 0x02
0x100003

| 0x00
0x100004

| 0x03
0x100005

| 0x00
0x100006

| 0x04
0x100007

|

| 0x00
0x200000

| 0x01
0x200001

| 0x00
0x200002

| 0x02
0x200003

| 0x00
0x200004

| 0x03
0x200005

| 0x00
0x200006

| 0x04
0x200007

|

4

(c) If a was created by “char *a” and points to a valid address, then “a++” means increment
the address stored in a by 1. Remember, the smallest address a processor can access is
1 byte, so a byte is the smallest unit (thus 1).

pptr is a pointer to an address. If your device has a 64 bit operating system (8 bytes),
then pptr++ increments pptr by 8. If your device has a 32 bit operating system (4
bytes), then pptr++ increments pptr by 4.

(d) “*(ptr1+1)” is 1, “*(ptr1+2)” is 0, “*ptr2” is 0x00010002, and “*(ptr2+1)” is
0x00030004.

numbers1[i] is exactly the same as *(ptr1 + i) and numbers2[i] is the same as
(ptr2 + i). More generally, “array[i]” is equivalent to “(ptr + i)”, where ptr is
a pointer to the array.

In order for this to work without creating a separate pointer, array actually works as
a pointer. Thus array[i] is equivalent to *(array + i), which equals *(i + array),
which means i[array].

Challenge 10 (a) We may multiply 1 as many times as we want to a number without any change. Therefore
1 is a multiplicative identity.

(b) Let A be a list of numbers and let j, k be counting numbers such that j Length(A)

and k Length(A). The expression
Qk

i=j A[i] is defined as follows.

(a) If j > k, then
Qk

i=j A[i] = 1.

(b) Otherwise j k, in which case,
Qk

i=j A[i] = A[k] ·
Qk�1

i=j A[i].

Notice that we define the base case to equal 1. If we set the base case to equal 0, the
subroutine will always return a 0.

(c) Below is a straightforward modification.

int product(int j, int k, int array[]) {
if (j > k)

return 1;

else

return array[k] * product(j, k-1, array);

}

This code can give garbage results if we pass in an empty array, say, using the expression
“product(0, 0, array)”, where int array[] = {};. We cannot predict what the
result will be, as it will depend on what is stored on the memory address of array. For
us, this is fine, as this problem occurs only when the user uses the subroutine incorrectly.
The expression “product(0, 0, array)” implicitly assumes array contains an element
at its 0th index. For an empty array this is false, so this is a case of garbage in, garbage
out. Nevertheless, as a programmer, it is much better to check for this case. For example,
a straightforward fix is to require that the user pass in the length of array, then do a
check to see if the length is 0.

Challenge 11 As I commented in the solution to Challenge 10c, the subroutine summation can return
garbage if its input is an empty array. But the root of the problem is not that someone might
try to use the subroutine on an array that is empty.

5

In Challenge 6, part (d), we saw that there is no telling what lies in an array outside what we
have defined. If the user were to use the subroutine using invalid indexes j and/or k, we’d be
in trouble. For example, if the user passed an array with length 5, but set j = 0 and k = 6,
the subroutine will be computing garbage.

Thus we see the root of the problem is that we have zero checks to make sure that the indexes
are within the bounds of the array.

In order to verify that an index is not going outside the length of an array, we need to know
the length of the array. Thus the first line of the function (the function header) should
be changed to “ int summation(int j, int k, int array[], int n) { ” where n is the
length of array. A subroutine should always require the user to pass in the length of each
array, in addition to any array that is being passed on.

In between the function header and the next line of code, there should be a check to verify that
j and k are between 0 and n - 1. If this check is not satisfied, we are trespassing on memory
space we should not have access to. In a case of memory access violation, the operating
system should be notified; for example, by including the instruction “raise(SIGSEGV);” (a
segmentation fault). Once a signal is raised, the programmer can handle this signal. One
way to do this is notifying the user of the problem, by printing our some message on screen,
and terminating the program, using the instruction “exit(EXIT SUCCESS);”. This instructs
the program to return the int 0 and terminate.

Challenge 12 For the C code on the right, y takes the value of 0. However, for the C code on the left, y takes
the value of 1, and not 0. The first time we saw the keywords “else if” is in fibonacci.
For each natural number k, only three of one cases are possible, analogous to trichotomy for
pairs of numbers. So replacing line 3 with k++; should never lead to both lines 3 and 5 being
run.

1 int fibonacci(unsigned int k) {
2 if (k == 0)

3 k++;

4 else if (k == 1)

5 return 1;

6 else

7 return fibonacci(k - 1) + fibonacci(k - 2);

8 }

Thus, if we have

if (...)

...;

else if (...)

...;

else

....;

6

only exactly one of the three cases are run.1

1 int x = 0;

2 int y = 0;

3 if (x == 0)

4 y++;

5 else if (y == 1)

6 y--;

Therefore, in the left code, exactly one of lines 4 and 6 can be run. Since x == 0 is true, line
4 is run, but not line 6, and the final value of y is 1.

1.4 Searching and Sorting

Challenge 13 (a) (i) is false, “A” < “a” is correct. (ii) is true. (iii) is false, “abjad” > “123” is correct.
(iv) is false, “aact” > “a123” is correct. (v) is false, “abba” > “abb?”

(b) Since “C++” < “Perl”, we divide up the array into two, then look into the lower half of
the array: [“C”

0
|“C++”

1
|“Java”

2
|“Javascript”

3
|“Lisp”

4
]. The item in the middle is “Java”;

since “C++” < “Java”, once again we divide the array into two halves, then look into
the lower half: [“C”

0
|“C++”

1
]. This array does not have a middle element, so we choose

the highest index in the first half of the array. In this case, this is the index 0. Since “C”
< “C++”, we divide the array into two halves, and look at the upper half: [“C++”

1
].

Finally, “C++” = “C++”, so we have found the string “C++” in index 1. The binary
search algorithm is done.

Challenge 14 ASCII characters form an ordered set. The goal of this Challenge is to show that twoples of
ASCII characters also form an ordered set (twoples are lists of length 2). That is, twoples of
ASCII characters obey both trichotomy and transitivity.

First, we show that trichotomy is satisfied. Let a and b be twoples of ASCII characters. We
need to compare the first characters a[0] and b[0]. Since a[0] and b[0] are ASCII characters,
they are elements of an ordered set, and they will obey trichotomy. Thus there are three
possibilities: (i) a[0] < b[0] (ii) a[0] = b[0] (iii) a[0] > b[0]. Let us consider case (i). By
the definition of lexicographical order, a < b, no matter what a[1] and b[1] are. Similarly,
in the case (iii), a > b. Let us consider case (ii): we now need to look at how a[1] and b[1]
compare. Once again, a[1] and b[1] are both ASCII characters, so there are three possibilities:
(1) a[1] < b[1] (2) a[1] = b[1] (3) a[1] > b[1]. In the first case, a < b; in the second case, a = b;
in the third case a > b. We have exhausted all possibilities and we see that trichotomy is
satisfied.

Next, we show that transitivity holds. To prove this, we need to show that for twoples of
ASCII characters a, b, c, if a < b and b < c, then a < c. Assume that a < b, which means
either (i) a[0] < b[0] or (ii) a[0] = b[0] with a[1] < b[1]. Let us analyze case (i); since b < c
either (1) b[0] < c[0] or (2) b[0] = c[0] with b[1] < c[1]. Since the set of ASCII characters obeys

1We are allowed to add any number of “else if (...)” conditions, depending on how many cases we need to
handle.

7

transitivity, case (1) implies that a[0] < c[0], and so a < c. In case (2), a[0] < b[0] = c[0], and
so a < c; this completes our analysis of case (i). Let us check case (ii), where a[0] = b[0] with
a[1] < b[1]. Once again, since b < c either (1’) b[0] < c[0] or (2’) b[0] = c[0] with b[1] < c[1]. In
the case (1’), a[0] = b[0] < c[0], so a < c. In case (2’), by transitivity of S, a[1] < b[1] < c[1]
and a[0] = b[0] = c[0]. Therefore, a < c. In all possibilities, a < c, and we see that twoples of
ASCII characters are transitive.

Since the set of twoples of ASCII characters is both trichotomous and transitive, it is an
ordered set. The proof is complete.

Challenge 15 First a few comments. We can associate each twople of ASCII characters as a string of length
2 by assuming a NUL is always placed at the end. Additionally, the string “string” is a string
of length 6 (since it has 6 characters), but it could also be interpreted as a string of length 10
(or really any length) by extending it witn 4 copies of a fictional character with value �1.2

The proof from the previous challenge doesn’t use any property of ASCII characters besides
the fact that they form an ordered set. Therefore, the proof from the previous challenge
with all reference to set of ASCII characters replaced with an arbitrary nonempty ordered
set su�ces. So we can assume that set A consisting of all lists of length 2 whose entries are
elements from any ordered set is itself an ordered set.

Here is the proof that ASCII strings of length 4 form an ordered set. By the previous
challenge, ASCII strings of length 2 form an ordered set (since twoples of ASCII characters
can be thought of as strings of length 2),3 and so the collection of twoples of ASCII strings
of length 2 is an ordered set. Done!

Since ASCII strings of length 4 form an ordered set, twoples of those form an ordered set.
Hence ASCII strings of length 8 form an ordered set. Use the previous Challenge once more
to see that twoples with first entry of ASCII strings of length 8 and second entry of ASCII
strings of length 2 form an ordered set. Therefore, ASCII strings of length 10 form an ordered
set.

Challenge 16 When you are about to write a subroutine, you would have an idea of what kind of outputs
the subroutine will return, given various inputs. The very first step to writing a subroutine is
to gather a number of such input, output pairs, so you can check that the subroutine works
on some examples. If you writing a subroutine for a computer, then you should be able to test
the subroutine on more complex inputs; the first step to writing a subroutine for a computer
is to write a set of test suites so that you can thoroughly test the subroutine.

(Step 0) It is time-consuming for us to manually go through the code for binary search on very
large arrays, so we will have to make do with some simple arrays: [1], [1|2], [1|2|3],
and [1|2|4|5]. Normally, we would also include the empty array []. However, as I have
discussed in the solution to Challenge 10 part (c), there is no correct way for a user to
call binary search on an empty array (this is also true for linear search). For now,
we will assume that the user will not call on either search algorithms on empty arrays.

2In this case we’d be extending the extended ASCII encoding system, but we’ve already been referring ti the
encoding system without the word extended, so removing one more is not a big issue.

3Technically, there would have to be a mull terminator at the end, but this point is unimportant.

8

• Searching for 1 in [1]: since both left and right is 0, left > right is false, and
we skip to line 5. Then mid is 0, and line 6, array[mid] == item is true, so we
return index 0 in line 7.

• Searching for 1 in [1|2]: since left is 0 and right is 1, left > right is false, and
we skip to line 5. Then mid is b(0 + 1)/2c = 0, and line 6: array[mid] == item is
true, so we return index 0 in line 7.

• Searching for 1 in [1|2|3]: since left is 0 and right is 2, left > right is false, and
we skip to line 5. Then mid is b(0 + 2)/2c = 1, and line 6: array[mid] == item is
false, so we go to line 8. Since 1 < 2, we go to line 9, where we do a recursive call
binary search(3, 0, array, 0). From here, the steps are analogous to searching
for 1 in [1].

• Searching for 1 in [1|2|4|5]: since left is 0 and right is 3, left > right is false,
and we skip to line 5. Then mid is b(0+3)/2c = 1, and line 6: array[mid] == item
is false, so we go to line 8. Since 1 < 2, we go to line 9, where we do a recursive call
binary search(3, 0, array, 0). From here, the steps are analogous to searching
for 1 in [1].

• Searching for 3 in [1]: since both left and right is 0, left > right is false, and
we skip to line 5. Then mid is 0, and line 6, array[mid] == item is false, so we go
to line 8. Since 3 6< 1, we go to line 10, and then do a recursive call in line 11 of
binary search(3, 1, array, 0). Then we go to line 2 for left = 1 and right =
0. Evidently left > right, and so we go to line 3, where we return -1.

• Searching for 3 in [1|2]: since left is 0 and right is 1, left > right is false, and
we skip to line 5. Then mid is b(0 + 1)/2c = 0, and line 6: array[mid] == item is
false, so we go to line 8. Since 3 6< 1, we go to line 10, and then do a recursive call
in line 11 of binary search(3, 1, array, 1). From here on the steps are similar
to the ones when searching for 3 in [1].

• Searching for 3 in [1|2|3]: since left is 0 and right is 2, left > right is false, and
we skip to line 5. Then mid is b(0 + 2)/2c = 1, and line 6: array[mid] == item is
false, so we go to line 8. Since 3 6< 2, we go to line 10, and then do a recursive call
in line 11 of binary search(3, 2, array, 2). We start again from line 2, which
is false. We go to line 5 where mid is b(2 + 2)/2c = 2. The condition array[mid]
== item is true, so we return the index 2.

• Searching for 3 in [1|2|4|5]: since left is 0 and right is 3, left > right is false,
and we skip to line 5. Then mid is b(0+3)/2c = 1, and line 6: array[mid] == item
is false, so we go to line 8. Since 3 6< 2, we go to line 10, and then do a recursive call
in line 11 of binary search(3, 2, array, 3). From here on the steps are similar
to the ones searching for 3 in [1|2], except that the recursive calls are in line 9, rather
than line 8.

(Step 1) As in linear search, the first thing the search algorithm needs to check is if left
right (done in line 2). If not, we must return -1 and terminate immediately. Otherwise,
we check if the middle element of the array is equal to the item we are looking for. This
is done in line 6. If there is a match, then we return the index (this is done in line 7). If
there is no match, depending on the order of the item in relation to the middle element,
we must search the appropriate half of the array. These cases are handled correctly in
binary search. Step 1 is complete.

9

(Step 2a) There are two recursive calls. If item < array[mid], then left stays the same, but
right becomes (left + right)/2 - 1. Therefore, the input array we must search
in the recursive call is reduced. The same reasoning applies to the case when item >
array[mid], and Step 2a is done.

(Step 2b) Although there are two recursive cases, the two cases are so similar that only one needs
checking. Suppose that item < array[mid] and the recursive call binary search(item,
left, array, mid - 1); works correctly. There are two cases, either the recursive
cases returned -1, or an index. Assume that the recursive call returned -1. That means
[array[left]|array[left+1]|...|array[mid-1]] does not contain item. This recur-
sive call occurred because item < array[mid] is true. By transitivity,
[array[left]|array[left+1]|...|array[mid-1]|array[mid]|...|array[right]]
does not contain item, which is correct.

Assume that the recursive case returned an index. The recursive call is assumed to be cor-
rect, so this case is correct by assumption. This completes our analysis of binary search.

Challenge 17 (a) For storing small counting numbers, either would be fine, however an unsigned int
might be better if we are expecting to store larger numbers. If we expect to store very
large numbers, it might call for a long data type.

(b) The problem with this program is that it will never end! An unsigned int will always
be greater than equal to zero, so the condition “n >= 0” is always true, no matter what
the value of n is. The fix is to change the counter n into an int, so deleting the word
unsigned in line 6 will fix this bug. This perhaps explains why we’ve preferred using
int’s over unsigned int’s in our subroutines.

(c) Earlier in Challenge 8, we saw the importance of the order in which operators are evalu-
ated. The problem with our binary search is that in line 5, we calculate “left + right”,
then divide by 2. This sum could well be above 231 � 1 (assuming int uses 4 bytes).

(d) An array of length 231 + 1 will cause problem for sure, because 0 + 231 > 231 � 1.

(e) Picture (or don’t picture) an array of length 230 + 1 where the item is in index 230,
dead last. In order to reach this final index, binary search must calculate “(left +
right)” where right is 230 + 1 and left is either 230 � 1 or 230.4 In either case,
230 � 1 + 230 + 1 > 231 � 1 and 230 � 1 + 230 + 1 > 231 � 1, so the bug is triggered. This
is not a problem for an array of length 230 or lower.5

The bug is triggered when using arrays of length 1,073,741,825 or higher. It was only in
the mid 2000s that such array sizes needed to be used in the industry.

Are you getting tired of all the +1’s and �1’s? I’m afraid this is the price of admission for getting into

computing...

(f) Suppose that array has length 231+1, and that left is 0 and right is 231. Then “(left
+ right)” exceeds the limit that int can store. On the other hand, “left + (riht -
left)/2” calculates just fine, since each calculation stays within the limits of what int
can store.

(g) Just like part (d), an array of length 231 + 1 will still cause problems.

4For the truncated division /, both (230 � 1 + 230 + 1)/2 and (230 + 230 + 1)/2 evaluates to the last index of
array: 230. Any other value of left will not give mid equal to 230.

5Because 230 � 2 + 230 � 1 231 � 1, everything fits inside an int.

10

(h) The input to the algorithm binary search includes int right, where a user provides
the length of array minus 1. Using an array of length 231 + 1 violates the precondition
that the length of the array fits inside an int, and is a misuse of the algorithm. On the
other hand, our original binary search fails to provide the correct behavior even when
the preconditions are satisfied. An example is the case described in part (e). This is
faulty programming.

Challenge 18 (a) No, if x has a value of 3, then x/2 + x/2 gives the value of 2, which is less than 3.

(b) digitlen(5) returns 1, digitlen(100) returns 3, and digitlen(199) also returns a 3.
Thus the subroutine digitlen calculates the number of digits in a decimal unsigned
int.

(c) This requires translating the code snippet for breaking a number into two halves, into
math. Since n = 5, we have bn/2c = 2. Thus, we need to find integers a, b such that
25621 = 102a + b, where b < 102. Then a = 256 and b = 21. Similarly, c = 301 and
d = 71.

(d) Since x = 10bn/2ca+ b and y = 10bn/2cc+ d, their product is

x · y = (a · c)10bn/2c10bn/2c + (a · d)10bn/2c + (b · c)10bn/2c + b · d
= (a · c)10bn/2c+bn/2c + (a · d+ b · c)10bn/2c + b · d.

The only di↵erence between the algebraic manipulations here and Challenge 3 is that we
used an exponentiation rule abac = ab+c.

(e) There are four multiplications: a · c, a · d, b · c, and b · d. An identity to remove one of
the multiplications can be found by expanding out the product (a� b) · (c� d):

(a� b) · (c� d) = a · c� a · d� b · c+ (�b) · (�d).

Multiply both sides by �1, then add a · c+ b · d to both sides to get

a · d+ b · c = a · c+ b · d� (a� b) · (c� d).

Plug this into the formula from part (d) to get

x · y = (a · c)10bn/2c+bn/2c + (a · d+ b · c)10bn/2c + b · d
= (a · c)10bn/2c+bn/2c + (a · c+ b · d� (a� b) · (c� d)) 10bn/2c + b · d.

This formula only involves three multiplications: a · c, b · d, and (a� b) · (c� d).

11

(f) Because there are four multiplications in the formula, four recursive calls are required.

1 int rec prod(int x, int y) {
2 int n = (x >= 0 ? digitlen(x) : digitlen(-x));

3 if (n == 1)

4 return x * y;

5 else {
6 int e1 = pow(10, n/2 + n/2);

7 int e2 = pow(10, n/2);

8 int a = x / e2;

9 int b = x % e2;

10 int c = y / e2;

11 int d = y % e2;

12 return rec prod(a, c) * e1 +

13 (rec prod(a, d) + rec prod(b, c)) * e2 + rec prod(b, d);

14 }
15 }

I have broken up lines 12 and 13 into 2 lines because the statement went on for too long.
Since there is only one “;”, the compiler understands that lines 12 and 13 are a single
statement. In some programming languages, one needs to be careful when breaking up
long statements into multiple lines. This is not the case in C.

(g) The whole point of fast prod is to reduce the number of multiplication required. Notice
that the product a · c and b · d are both used twice. Instead of doing each of these

12

multiplications twice, we will save each calculation as a variable, then reuse the results.

1 int fast prod(int x, int y) {
2 int n = (x >= 0 ? digitlen(x) : digitlen(-x));

3 if (n == 1)

4 return x * y;

5 else {
6 int e1 = pow(10, n/2 + n/2);

7 int e2 = pow(10, n/2);

8 int a = x / e2;

9 int b = x % e2;

10 int c = y / e2;

11 int d = y % e2;

12 int ac = fast prod(a, c);

13 int bd = fast prod(b, d);

14 return ac * e1 + (ac + bd - fast prod(a - b, c - d)) * e2 + bd;

15 }
16 }

There are three recursive calls. If we did not have the variables ac and bd to save a · c and
b · d, respectively, there would have been five recursive calls.

This is actually a modified version of what Karatsuba proposed. Karatsuba used the identity
a · d + b · c = (a + b) · (c + d) � a · c � b · d. Thus it would be more faithful to the original
algorithm to replace line 14 with return ac * e1 + (fast prod(a + b, c + d) - ac -
bd) * e2 + bd;

Challenge 19 (a) k = 6; In binary, a = 100010 and b = 100011. In big-endian order, the bit arrays are a
= [1|0|0|0|1|0] and b = [1|0|0|0|1|1].

(b) After a logical right shift, a becomes [0|1|0|0|0|1] and b becomes [0|1|0|0|0|1].
Both new numbers are 10001 in binary, which is 24 + 1 in decimal.

(c) The new numbers are ba
2 c, and b b

2c, which happen to be equal.

(d) Applying another logical shift gives [0|0|1|0|0|0], which is 1000 in binary, or 23 in
decimal. This is equal to b a

22 c and b b
22 c.

(e) We can use the statement “int mid = left + ((right - left) >> 1);”.

(f) An alternative way is to use type casting, where we force the device to change the int’s
left and right into unsigned int’s:

“int mid = ((unsigned int)left + (unsigned int)high) >> 1;

By the preconditions, the absolute maximum values of left and right are 231�1, which
is the maximum possible value of an int of 4 bytes. Casting each into unsigned int’s,
we have 231 � 1 + 231 � 1 = 232 � 2, which is a valid unsigned int. Doing a right shift
gives 231 � 1, which is once again, a valid int value. Therefore, no overflow occurs.

13

(g) When stored in 32 bits, the bit arrays are

a = [0|1|0|0|0|1|0],

b = [0|1|0|0|0|1|1].

Applying a left shift results in the bit arrays:

[0|1|0|0|0|1|0|0],

[0|1|0|0|0|1|1|0],

respectively. In decimal, these numbers are 27 + 22 and 27 + 22 + 21, which are twice
the values of a and b. We see that each right shift on a nonnegative number has the
e↵ect of multiplying a number by 2, as long as we do not exceed the limits of what a
datatype can hold. If we apply another right shift, the decimal numbers are 28 +23 and
28 + 23 + 22.

14

	Reviewing Arithmetic
	Units
	Exponentiation
	Arrays and Datatypes
	Searching and Sorting

	Modern Precalculus
	Sorting Algorithms
	Sorting Algorithms

