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Welcome!

Calculus is situated right at the center of numerous exciting worlds, many undergoing intense
investigation, and countless more still uncharted, waiting for an intrepid explorer to set foot on it.
Pioneers who discovered the worlds currently known and the numerous adventurers that followed,
began their remarkable journey into the unknown as newcomers to calculus. Indeed, although
many tracts of calculus are still mysterious, the basic area every explorer is expected to be familiar
with is incredibly well understood. Rough foot paths into deep jungles are now paved roads, rivers
previously filled with piranhas are now bridged, and one of the thousands of well experienced tour
guides will escort you gently from start to finish, judiciously avoiding the strenuous bits, hitting
all the essential landmarks so that the busy traveller can move on to the next destination with far
greater ease than once before.

These improvements have been wonderfully effective, and calculus is no longer the terrifying
domain it once was. However, during all this progress, something had to make way—the spirit of
calculus. The unprecedented and immeasurable progress in all fronts over the past three centuries
were spearheaded by pioneers who embodied the spirit of calculus—taking the basic principles
and instincts developed from calculus, and using them to chart out new worlds that everyone had
overlooked, inviting other explorers to join them in their investigations into each new paradise.

It is in the spirit of calculus that we shall pursue it. We will uncover the underlying ideas, not
as visitors on a tour, but as discoverers on an expedition, uncovering the mysteries of an unfamiliar
land. We will venture into the core to see what lies underneath, into caverns only fully understood
two centuries after the initial discovery of calculus. We will take an excursion into a region off
limits for first timers, ascending up onto a mountaintop to take a glance at a magnificent view of
the quantum world. We will see truly spectacular sights, beyond the wildest dreams of pioneers
from not so long ago. Yet all of this will pale in comparison to the real prize of this expedition—you.
Our mission is no less than to discover your inner discoverer and unleash it! Your adventure begins,
now.
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Arithmetic

Let’s start at the very beginning. If you are very confident in your abilities in arithmetic and
basic algebra, jump ahead to Chapter 2. What is 1 + 1? It doesn’t get any easier than that. Of
course the answer to 1 + 1 is 2. Now, these numbers must mean something. For example, we
might be counting the number of apples in a pantry, and we observe that there is one apple next
to another apple, and so we conclude that there are 2 apples.

Very good, 1 + 1 = 2 and in particular 1 apple + 1 apple = 2 apples. If 1 + 1 = 2, what is the
answer to 1 apple+1 orange? Since 1+1 = 2, do we conclude the answer is 2? No, because we are
trying to add apples to oranges. When we say 1 + 1 = 2, we are assuming that each quantities are
compatible. Thus the answer to 1 apple + 1 orange is that the sum is unresolvable.1 An analogous
question would be: what is 1 meter plus 1 second? Once again, such questions cannot be answered
as their units do not match. Units matter, and we will draw on this key insight over and over again.

1.1 Units

All physical theories must have something to say quantitatively about the world around us. In
order to communicate coherently about real world objects, we must agree on a set of units. For
example, the distance from one café to another might be 50 meters. Or is it 164 feet?

This is one case where trying to please everyone turns out to be helpful. In order to make
everyone happy, let us agree to refer to all sorts of distance measurements as a Length. Thus the
height of a building and the distance from the earth to the sun are both instances of Lengths.

Now, in order to indicate speed, we usually divide something by time. For example, 6 slices of
pizzas per hour might mean the speed at which pizza slices were consumed. Similarly, the distance
from the earth to the sun, divided by the time it takes for light to hit the earth from the sun
indicates the speed of light. Thus dividing a length by time gives us speed:

Length

Time
= Speed.

Some like to use seconds to measure time, others like to use hours; we will call all time measurements
Time. Suppose I ate 6 slices of pizza per hour for 2 hours. Then, I ate a total of: 6 slices/hour ×

1If you think there is another possible answer, you are right! We will return to this point later.

1



2 CHAPTER 1. ARITHMETIC

2 hours = 12 slices. If we multiplied the speed of light by 1 year, which is a Time, then

Length

���Time︸ ︷︷ ︸
speed of light

× ���Time︸ ︷︷ ︸
1 year

= Length.︸ ︷︷ ︸
one lightyear

Another fundamental type of measurement is mass, which for now we will use interchangeably
with weight. Some folks use kilograms, others use pounds. We will refer to these as Mass.

Einstein told us that Energy is mass times the speed of light squared. In symbols, this is
E = mc2, where E is energy, m is mass, and c is the speed of light. Notice that when using symbols,
we omit the × symbol. Thus E = mc2 means E = m × c2, which in turn means E = m × c × c.
Since m is a Mass and c is Length divided by Time (speed),

Energy = Mass×
(
Length

Time

)2

= Mass× Length

Time
× Length

Time

= Mass× Length2

Time2
.

base

height

side

Figure 1.1: A cube with a base, side, and height.

Here is my first challenge for you. The main challenge with this one is getting your pencil and
paper out. Later ones may not be this easy!

Challenge 1

(a) We can simplify arithmetic expressions using cancellation. For example,

5× 10× 3

3× 2
× 2 =

5× 10× �3

�3× �2
× �2 = 5× 10.

Try simplifying the following expressions. By convention, 22 = 2× 2 and 53 = 5× 5× 5.

55 × 3

53
55 × 3

53

22

(b) A volume of a cube is the base of the cube multiplied by the side of the cube and the hight
of the cube (see Figure 1.1). A density of a substance is its Mass divided by volume. Use
cancellation to simplify the following expression as much as possible. Do you recognize it?

Length5 × density

Time2
.
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(c) Remember that we cannot add apples to oranges. Thus the mathematical expression

2 oranges + 3 apples

makes no sense. Similarly, we cannot add a Length to Time. Identify which of the following
arithmetic expressions are valid:

Length5 × density

Time2
+

Length

Time
,
Length5 × density

Time2
+ Energy,

Length5 × density

Time2
+

Energy2

Time
.

What we have found in Challenge 1 is that the laws of nature are constrained rather strongly.
For example, if Einstein told us E = mc+m/c or E = m+ c2, there’s no way either could be true
because the units cannot match. Let’s put this idea into use.

Hot and cold

Below is an image of the Trinity nuclear test, the first detonation of a nuclear weapon in
history. The campaigns at Iwo Jima, Okinawa, and many others, were proving to be far too brutal
and deadly to its participants (including civillians) during World War II. There was a need for
a weapon so dangerous that the other side would have no choice but to surrender, thus ending
the war. The atomic bombing of Hiroshima and Nagasaki killed over a hundred thousand people.
The bombing also immediately led to the end of the Second World War; the surrender of Japan
meant a full scale invasion of the island (Operation Downfall) was cancelled. The counterpart to
Operation Downfall was Japan’s Operation Ketsugō, which called for “the glorious death of one
hundred million.” Whether this was realistic or not, an invasion of the island to end the war would
have killed several millions of people from both sides.

Trinity ushered in the atomic age and ended the Second World War. However, another one was
to follow immediately: the First Cold War. A fear of an imminent end of humanity always loomed
in the air, nuclear warfare could happen at any moment. However, many of us were born after the
dissolution of the Soviet Union, and we have little idea how bad things were back then.
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Nevertheless, you and I reap the benefits of those times. I am writing these words on a computer,
first developed during World War II to facilitate calculations for ballistics and explosives. I use a
program to compile the words I write into an image file that you can read; the first reprogrammable
computers were developed to do numerical calculations for the hydrogen bomb. The internet
originates from ARPANET, a project designed for sustained communications during a nuclear
war.2 Our phones (a miniaturized computer) have a long battery life because it uses lithium
ion batteries, developed by the CIA during the heat of the Cold War for use in spy gadgets.
Cavity magnetrons were top secret technology that had to be approved by Prime Minister Winston
Churchill before being shared to the Americans during WWII. The technology completely shocked
American scientists as it was a thousands times better than anything they had, and it was used
to develop radars. If you have a microwave oven, a cavity magnetron is what vibrates the water
molecules in your food to heat it. If I’m feeling hungry were to order food online at home, I know
my order will arrive correctly because of GPS technology, developed to pinpoint ballistic missile
submarines and mobile launch platforms. A GPS user finds their location by receiving geolocation
information from satellites. Satellites were developed by the Soviet Union because they lacked
airborne bombing capabilities and needed to develop intercontinental ballistic missiles (ICBM)
that could reach continental US.3

We return to Trinity, the test that started the atomic age. As we can see from the test image,
the energy from the bomb is released in what appears to be a spherical blast. The radius of a
sphere is the distance from the center of the sphere to its boundary. Thus radius is a Length. The
radius of the blast (let’s label this with the letter R) will be proportional to the energy of the bomb
(we’ll refer to this with the letter E), and the Time since blast, t.4 If the bomb was surrounded
by dense material, such as concrete and steel, we’d imagine the blast radius will be smaller. On
the other hand, if the bomb was surrounded by less dense material like air, the blast radius will be
larger. We will refer to the density of the surrounding material with the Greek letter ρ (rho). Below
is a table summarizing what we have. Later on, we will use the shorthand appearing in the fourth
column to save on space. As is customary when using symbols, ML2/T2 omits the ‘×’ symbol.

variable meaning unit type unit shorthand
R Radius (of a Blast) Length L

E Energy (of a Bomb) Mass ×Length2

Time2
ML2/T2

t Time passed Time T
ρ Density (of the surrounding) Mass/Length3 M/L3

A function is object that takes in an input and yields an output. For example, if f : x 7→ 2x,
then the function f takes in a number x and returns 2x. We need some predictability, thus whenever
we input the same value to a function, the function is required to return the same output. A function
can sometimes be represented as a formula. For example, our function f can also be written as
f(x) = 2x, where the left side of the equation is a formula to the function on the right side.

What we would like to know is the simplest formula for the energy of a bomb E, given that
we know its blast radius R at time t with surrounding material density ρ (there could be other

2The first email was sent over the ARPANET, for example.
3A satellite with a nuclear weapon payload, reduced angle of launch, and protective cap for reentry is an ICBM.
4Within seconds of the blast, a larger value of t will lead to a larger blast radius R.
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contributing factors, but the ones we have written down look like they are the most important).
From Challenge 1, we know that there is a simple formula to express such cases. Since

Energy =
Length5 × density

Time2

we see that energy E must be proportional to R5ρ
t2 , by considering the units involved. I say propor-

tional to, because the simplest formula for energy E could be

E = 3
R5ρ

t2
, or E = 3.14

R5ρ

t2
, or E = 5

R5ρ

t2
, or . . . .

We cannot rule out any such possibilities because a number itself has no units. 5 meters is a
Length with a unit of meter, but the number 5 has no units. We call the numbers 0, 1, 2, 3, 4,
. . . that we use to count, the natural numbers. The integers are those numbers consisting of
the natural numbers and its negative counterparts −1,−2,−3, . . . (the convention is that −0 = 0).
The numbers 1, 2, 3, . . . are also called positive integers.

We make explicit our ignorance by including a number β, as shown below. Without additional
information, we cannot know β, only that it has no units.

E = β
R5ρ

t2
(1.1)

Challenge 2

(a) Since we do not know what β is, let us assume β = 1 for now. Does equation 1.1 make sense?
Is an increase in blast radius associated with more energy? If we had a very dense surrounding
material (thus a high density ρ), what would that tell us about the energy? What if the time
to reach a specific blast size was smaller, what would that tell us about energy E?

(b) Using a calculator, the nuclear test image, and equation 1.1 with β = 1, estimate the energy
released by the trinity experiment. We will use meters (m) for radius R, kg/m3 for density ρ,
and seconds (s) for time t. Thus E has the unit kg·m2/s2.5 Just eyeball the value for radius
R, and use the fact that air density ρ is about 1.2kg/m3.

(c) The unit of energy kg·m2/s2 is called a joule (symbol J). The standard convention for ex-
plosive energy released by a fission weapon like Trinity is thousands of tons of TNT, called
kilotons. Using the fact that 4.2× 109 joules is about 1 ton of TNT, convert your answer in
part (b) into kilotons. This is just an estimate, feel free to round to the nearest kiloton.

(d) Look up the yield of the Trinity nuclear test online and compare with your result from (c).
Use it to find the number β, rounding to the nearest integer.6

I hope that Challenge 2 gives a first indication that arithmetic is more than what we punch into
calculators. Our next step is to figure out how we can obtain the formula

E =
R5ρ

t2

in the first place. To do this, we will need to review a bit of multiplication.

5The · is a shortened form of ×. We need a multiplication symbol because units aren’t always single letters.
6G.I. Taylor was one of the first outside the Manhattan Project’s core group to estimate the yield of Trinity

based on blast photos. This was in 1950 when not only was Trinity’s yield a Top Secret, but only one country in the
world had any nuclear arsenal. G.I. Taylor did not use dimensional analysis to obtain his results.
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1.2 Exponentiation

The multiplication 13 · 9 can be done relatively easily in our heads if we remember that7

13 · 9 = (10 + 3) · 9 = 10 · 9 + 3 · 9 = 90 + 27.

Since 13 · 9 = 9 · 13, an entirely equivalent calculation is

13 · 9 = 9 · 13 = 9 · (10 + 3) = 9 · 10 + 9 · 3 = 90 + 27.

In order to make general mathematical statements, we will almost always use symbols in place of
numbers, just like we used R to refer to a radius (of a blast). Suppose we have three numbers on
hand which we denote by the letters a, b, and c. Then the above calculations may be expressed as

(a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c.

We will usually skip the ‘·’ when using symbols and we will write the above as (a + b)c = ac + bc
and a(b+ c) = ab+ ac. Thus a(b+ c+ d) = ab+ ac+ ad and (i+ j + k + l)z = iz + jz + kz + lz.

Challenge 3

(a) Use the fact that (a + b)(c + d) = ac + ad + bc + bd to show that (10 + x)(10 + y) =
10 · (10 + x+ y) + xy. We will apply it and a slightly tweaked version of it in part (b).

(b) Do the multiplication 16 · 14 in your head. Next, do the multiplication 116 · 114 in your head.

Now that we have reviewed the multiplication of two numbers, let us review the multiplication
of a finite collection of numbers. We know that 1000 = 10 · 10 · 10 and 10000 = 10 · 10 · 10 · 10.
As a convenient notation, let us agree to write 1000 = 103 and 10000 = 104 instead. Similarly,
0.1 = 1/10 is written as 10−1, which means that 0.0001 = 0.1·0.1·0.1·0.1 = 10−4. This bookkeeping
convention is called exponentiation and we typically indicate this using the word power. For
example, 104 is 10 to the power of 4 and 10−4 is 10 to the power of −4. The number we are
exponentiating is called the base. Thus 10 is the base of both 104 and 10−4.

Below are the exponentiation rules. The letters a and d are positive integers which we use as
bases. The letter b and c are the powers and they could be integers or fractions of nonzero integers.

• a0 = 1 as in 30 = 1 and Length0 = 0,

• a−b =
1

ab
as in 8−1 = 1

8 and Time−2 = 1
Time2

,8

• ab · ac = ab+c as in 62 · 65 = 67 and Mass3· Mass−4 = Mass−1,

• (a · d)b = ab · db as in (2 · 5)4 = 24 · 54 and (Mass · Time)2 = Mass2 · Time2,

• (ab)c = abc as in (2−3)4 = 2(−3)·4 = 2−12 and (Length2)4 = Length8.

7From now on, we will prefer using the symbol · instead of ×.
8From this rule it follows that if a is nonzero, then b

1/a
= ab. As an example, if we divide three pizzas, each into

eight slices, then there will be twenty four slices: 3
1/8

= 3 · 8 = 24.
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When the fraction 1
2 is used as a power, the number a1/2 is usually written

√
a. Thus, the expo-

nentiation rules allow us to write the following.

53/2 = (53)1/2 =
√
53

More generally, for each positive integer n, one sees a1/n written as n
√
a, called the nth root. For

example, 31/5 = 5
√
3. The 2nd root is usually called the square root, thus

√
53 is the square root

of 53. The key take away from fractional powers is that using the fifth exponentiation rule:(
ap/q

)q
= a(p/q)·q = ap

where a is not a negative number and p, q are positive integers. For example,
(
545/3

)3
= 545.

Simultaneous equations

We are now ready to obtain a formula for the nuclear blast yield. For reasons that will be clear
much later, we will first calculate a formula for the radius of a nuclear blast. Hence, we will first
find how the radius of a nuclear blast R is related to the energy of a bomb E, time since blast t,
and surrounding material density ρ.

As we have seen before, equations such as

R = E + t+ ρ or R = E + t · ρ

are not possible because the units don’t match. For example, in the former case we know that it
makes no sense to add energy to time and density. On the other hand, the simplest formula that
could work is

R = d · Ea · tb · ρc, (1.2)

where a, b, c, and d are unknown numbers. The first three are the ones we use to make the units
match in both sides of the equation. The number d on the other hand has no units; such numbers
are called dimensionless constants. The number β in Equation 1.1 was a dimensionless constant.

For instance, notice that R is a length, so it has no units of time T.9 However, on the right side
of equation 1.2, the variables E and t include the unit T. This means we need to find numbers a
and b such that the unit T cancels out. Similarly, the radius R is independent of mass M. But the
variables E and ρ have unit M. So we will have to find a and c that cancels out the unit M.

To proceed, let us convert Equation 1.2 into an equation consisting soley of units. Since the
number d has no units, we’ll put it aside for now. Using our table of units from earlier, we can
write

L =

(
ML2

T2

)a

· Tb ·
(
M

L3

)c

.

We use the exponentiation rules from before to simplify the right side of the equation above as(
ML2

T2

)a

· Tb ·
(
M

L3

)c

=
MaL2a

T2a · Tb · M
c

L3c = Ma ·Mc · T
b

T2a ·
L2a

L3c = Ma+c · Tb−2a · L2a−3c.

9We are using the unit shorthand: Mass is M, Length is L, and Time is T.
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Thus

L = Ma+c · Tb−2a · L2a−3c or equivalently, M0 · T0 · L1 = Ma+c · Tb−2a · L2a−3c.

In order to make this equality hold, we need to set the power of M at a+ c = 0, the power of T
at b− 2a = 0, and the power of L at 2a− 3c = 1.

The first requirement tells us that a = −c. Hence 2a = −2c, and plugging this into the third
requirement, we have 1 = 2a−3c = −5c. Thus c = −1/5 and a = 1/5. The only thing left is to find
b, so let us look at the second requirement: b− 2a = 0, which is equivalent to b = 2a (by adding 2a
to both sides). Since a = 1/5, we have b = 2a = 2/5. Therefore,

L =

(
ML2

T2

)1/5

· T2/5 ·
(
M

L3

)−1/5

,

or in our original equation form
R = d · E1/5 · t2/5 · ρ−1/5.

We now know the relationship between, say, the energy contained in a nuclear bomb and its
blast radius. Let us invert the relationship so that we have energy E expressed as a combination
of R, t and ρ. Taking the power of 5 to both sides, we get

R5 = d5 · E · t
2

ρ
.

Now multiply each side by ρ
d5·t2 and let β := 1/d5 to get

E = β
R5 · ρ
t2

, where β is a dimensionless constant. (1.3)

Because we are doing arithmetic with units, unit-less numbers (dimensionless constants) cannot be
determined by this procedure. Using some additional information in Challenge 2, we found out
that β rounds to 1.

Although our process for finding Equation 1.3 was fairly long, the main problem was that of
finding three unknown numbers a, b, and c such that the equations

a+ c = 0, b− 2a = 0, and 2a− 3c = 1

are all satisfied simultaneously.10

The act of taking a problem, determining the relevant factors and their corresponding units,
and using these to investigate relationships between the factors is called dimensional analysis11.
This is a useful skill, and I will be counting on you to do your own dimensional analysis later on.
Rest assured, all dimensional analysis we will encounter in this book are much simpler than the
Trinity problem.

10There are three equations that must be satisfied, because we need to make sure that the units of mass, length,
and time each match up. Furthermore, there are three unknown numbers (called a, b, c here) because there are three
variables (energy E, time t, and density ρ) that form what we want (radius R).

11Why not call it unit analysis? Because unlike meters, kilograms, and seconds, Length, Mass, and Time are not
strictly speaking, units. We will call these dimensions, hence the name: dimensional analysis.
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A search problem

If there are 5 pigeons in pigeonholes, but only 4 pigeonholes, then one of the pigeonholes must
have at least 2 pigeons. More generally, if there are m pigeons, and n pigeonholes, with m > n,
then at least one pigeonhole has 2 or more pigeons. This is called the pigeonhole principle.

Challenge 4 Here is a very simple algorithm a device could use for finding music titles after
hearing the first few segments of some music. A music begins with a starting pitch; check if the
next pitch is the same, higher, or lower. If lower, register the number 0 in a box; if the same, register
the number 1; if higher, register the number 2. Check the next pitch, and place the evaluation of
the pitch difference in a box to the right. Repeat for each subsequent pitch. Once we are done, we
might be able to obtain a long sequence of boxes with numbers in them called a signature of a
song. An example is:

1 0 2 1 2 2 2 0 · · · .
Whenever someone needs to search for a song, all we need to do is to compare the signature of the
song to an existing database of signatures. On a first examination, this algorithm seems to throw
away far too much information about a song to work. For example, why are we not recording the
first pitch? Why aren’t we recording more fine grained information about each subsequent pitch?
On a closer examination, this is more effective than it seems, and the simplicity affords advantages.

(a) Each song length varies widely, and it is costly to store too many boxes. If we allocated 0
boxes per song (each song has a signature of length 0), then how many unique signatures are
possible? What if we allowed 1 box per song? Repeat for 2, 5, and 8 boxes.

(b) Our algorithm can be thought of placing each song signature (pigeon) into a pigeonhole. We
want to ensure that we have enough pigeonholes to make it less likely that pigeons (song
signatures) occupy the same hole. What is the minimum number of boxes we need to store
the signature of one music, if we wish to distinguish between 100 million songs?

(c) We use a base 10 system, because most humans have 10 fingers. However, hours and minutes
are divided into 60 segments (60 minutes = 1 hour, 60 seconds = 1 minute). Below is an
illustration of the base systems:

127 = 1 · 102 + 2 · 101 + 7 · 100 (base 10), 120 = 2 · 601 + 0 · 600 (base 60).

Each box is only allowed to store the numbers 0, 1, 2. Thus our boxes operate in base 3.
What is the largest power of 3 whose multiple fits in 12? Express the number 12 in base 3.

(d) Suppose we were to classify pitches into 12 different categories. What is the fewest number
of boxes required to record the 12 different pitches? We are assuming a box can only store a
single natural number between 0 and 2, inclusive.

(e) The assumption from part (d) is still in place. Suppose we modified the algorithm to keep the
starting pitch (by categorizing them into 1 out of 12, and storing the category number into
boxes). Thereafter, everything is the same (store 0/1/2 in a box based on the difference in
subsequent pitch). Under this scheme, how many boxes would you need to store the signature
of one music, given we wish to distinguish between 100 million songs?

(f) In terms of number of boxes needed, is it better to keep the starting pitch or is it worse?
How many more/fewer boxes in total would you need to store starting pitches of 100 million
songs? Would your answer change if there were 200 million songs in total?

(g) For reasons other than storage space, why might it be better to discard the starting pitch?

We are now ready for calculus, which we begin in the next Chapter!
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Differentiation

2.1 Arithmetic of Velocities

r

a

b

Figure 2.1: A circle of radius r, and an ellipse of height 2a and width 2b.

Let us begin with a review of dimensional analysis.1 The formula for an area of a circle of radius
r is given by πr2. What if someone told you that the formula is actually πr3 or πr? That would
not make any sense, because if the circle had its radius measured in meters, we would expect its
area to have the units of meter2, not meter3 or simply meter. This is the idea behind dimensional
analysis: we check to see if the units make sense.

Since there are many different units in use that are interchangeable, we will refer to meters,
feet, etc by the generic term “Length”, and seconds, hours, etc by the generic term “Time”.

Now, it is not possible to simply check the units to get the final answer. For example, we can
expect that an area of a circle of radius r will be given by a formula proportional to r2, but we
cannot know the factor π. Thus we cannot rule out the possibility that the area of a circle is
given by 2r2, to take an example, by only using dimensional analysis. Some additional information
must be available. Numbers like 2 and π which have no units, and cannot be figured out with
dimensional analysis are called dimensionless constants. The generic terms “Length” and “Time”
which represent concrete units of measurement are called dimensions. We use dimensions instead
of units because we want the results to be the same, regardless of the exact units we may choose.

1If you are looking for more, see Sanjoy Mahajan’s excellent Street-Fighting Mathematics.

11
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For example, the formula for an area of a circle should stay the same whether we measure radius
in meters or feet.

With this limitation in mind, let us see if we can guess the formula for an area of an ellipse, a
shape shown on the right of Figure 2.1. There are two variables we can work with: a and b, each
of which we will assign the dimension of Length. The formula of an area should have the form of
Length2, and so let us consider the simplest ways we could combine the variables a and b to get such
a combination. There are two such simple possibilities: c1ab, and c2a

2 + c3b
2, where the numbers

c1, c2, and c3 are dimensionless constants.2 Already we can make a simplification. The area of an
ellipse should not depend on the label “a” and “b”—in other words, if we flip the diagram of the
ellipse in Figure 2.1 so that the height is the width and vice versa, then the area must remain the
same, even though a and b are switched. Therefore, the constants c2 and c3 must be the same.

We can rule out candidate formulas by looking at some simple cases. Consider the extreme case
where a := 0 and b := 10. Of course, such an ellipse cannot exist in the physical world, but a
formula for an area should capture the fact that such an ellipse will occupy zero area. For the first
candidate, c1ab = c1 · 0 · 10 = 0, which behaves as expected. However, the second candidate fails
unless c2 = 0, since 0 = c2a

2 + c2b
2 = c20

2 + c210
2 = c210

2.3

With one candidate left, we guess that an area of an ellipse of height 2a and width 2b is given by
the formula c1ab. This is as far as dimensional analysis will get us. However, we have some extra
information: a circle is an example of an ellipse with a = b. Thus if a = b, our formula for an area
of an ellipse should be πa2. We therefore conclude that c1 := π, and our final guess is that the area
of an ellipse is given by πab. We will later verify the correctness of this formula using calculus.

Differentiation Rules

Calculus is like a car, it can get us to places we never thought we could be at, with far less
effort than we would expect. To get somewhere, we need at least two piece of information—how
far away it is, and how long it will take for us to get there. The former pertains to the concept of
displacement needed, while the latter relates to velocity.

Everyone moves about, hence the concept of velocity and displacement are universal. Using
dimensional analysis, we can get a huge mileage out of simply applying arithmetic to units. This
gives us a strong suspicion that applying arithmetic to other objects may turn out to be fruitful.
So here is what we will do. Our goal will be to create an arithmetic of velocities and displacements.
We will begin with velocity, because velocity is necessary to exhibit displacement.

To describe velocity, or any kind of motion, we will use functions. The simplest type of functions
one could think of are those that keep track of an object’s position at each time. The simplest of
such functions will be a position function for an object that stays completely still at a location.
The next simplest would be a position function for an object that moves at a constant velocity of
1 meter/second in one direction. These two functions are graphed below in Figure 2.2. The x-axis
of a graph denotes the horizontal line used to represent the input variable’s values. In the graphs
below, the x-axis is used to represent the input variable “time” t (measured in seconds). The y-axis
of a graph denotes the vertical line used to represent the output variable’s values. In the graphs
below, the y-axis is used to represent th output variable “position” x (measured in meters).

2We could contemplate formulas like c4a3/b + c5b10/a8 or c6b2 + c7ab, but these are not the kind of simple
formula we are looking for. In any case, these can be ruled out using the methods we use below.

3Notice we have replaced the constant c3 by the constant c2 because they must have the same value.
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Figure 2.2: (Left) A position function f1 of a stationary object at position 0.5 m. (Right) A position
function f2 of an object moving at a constant velocity of 1 m/s.

The first position function f1 : t 7→ 0.5, has velocity 0 m/s for all time, while the second position
function f2 : t 7→ t, has velocity 1 m/s for all time.4 We will denote the velocity function of
an object by adding a ′ symbol to the object’s position function. Thus we write f ′

1 : t 7→ 0 or
equivalently f ′

1(t) = 0 because there is no motion in our first object, and so the velocity function
of f1 always outputs zero. We say that f ′

1 is the zero function. Even if our stationary object was
placed somewhere else, thus shifting our graph of f1 up or down, it will still be the case that f ′

1 is
the zero function. Thus if a function f is a constant function that outputs the same value for each
input t, then

Constant Rule: f ′ : t 7→ 0. 5

On the other hand, f ′
2(t) = 1, because the velocity function of f2 always outputs 1 (m/s).

Sum rule

We now turn to arithmetic. First, let us try addition. What can dimensional analysis tell us
about (f + g)′? Taking f and g to be position functions as above, we see that their sum f + g will
have outputs of dimension Length. A velocity function (f +g)′ will then have outputs of dimension
Length/Time. The simplest formula that achieves this is the formula (f + g)′ = c1f

′ + c2g
′. The

order in which we take the addition should not change the result, so we note that c1 = c2. Like
in the case of the ellipse, we can conjure up an example to help us determine the dimensionless
constant c1. Take f to be the zero function so that f ′ = 0 and f + g = 0 + g = g. Hence,
g′ = (f + g)′ = c1f

′ + c1g
′ = 0 + c1g

′ = c1g
′. We see that the constant c1 is 1, and we have the

sum rule.

Sum Rule: (f + g)′ = f ′ + g′.

For subtraction, define the function h : t 7→ −g(t) that flips the sign of the outputs of function g.
Applying the sum rule gives (f − g)′ = (f + h)′ = f ′ + h′ = f ′ + (−g′) = f ′ − g′.

Subtraction Rule: (f − g)′ = f ′ − g′.

4The notation f1 : t 7→ 0.5 means the function f1 turns each input t into 0.5. It is equivalent to writing
f1(t) = 0.5. Similarly, f2 : t 7→ t means the function f2 takes each input t and outputs t. It is also written f2(t) = t.

5This can also be written f ′(t) = 0, or f ′ = 0.
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Product rule

Next, we consider products of position functions f and g. Now, taking a product of position
functions is a little weird. For one thing, if function h is the product of the position function f and
g, then the ouputs of h will have dimension Length2 (same as an area function), so h is no longer a
position function. This means that it is odd to speak of a velocity function of h. Nevertheless, we
can still talk about the rate of change of functions, so instead of speaking about velocity functions,
we will speak of derivatives. Suppose we have a function that takes inputs with dimension ♢ and
outputs quantities of dimension ♡. Then the rate of change (the derivative) of the function as we
vary inputs (of unit ♢) will have the dimension ♡/♢. For example, consider a position function
whose input is of dimension Time and output is of dimension Length. Its derivative will have
dimension Length/Time, just as we expect from a velocity function.6

We will write fg to mean the product of functions f and g. That is, the function fg takes an
input t and outputs f(t) · g(t).7 If the dimension of fg is Length2 and the dimension of the inputs
of fg is time, then the derivative (fg)′ will have dimension Length2/Time.

Immediately, we see that the formula for (fg)′ cannot be of the form cf ′g′ for some dimensionless
constant c. This is because cf ′g′ has the dimension Length2/Time2, which has an extra division
by Time. Instead, the simplest ways we can use the functions f, f ′, g, g′ and combine them to get
dimension Length2/Time are the following three options:

c1(f
2)′ + c2(g

2)′, c3ff
′ + c4gg

′, c5f
′g + c6fg

′.

The product function fg is the same as the product function gf because the order of multiplication
does not matter. Since the labels f and g are interchangeable, we have c1 = c2, c3 = c4, and
c5 = c6.

Recall that we were able to narrow down the options when guessing a formula for an area of
an ellipse by considering an ellipse with 0 thickness. We can also narrow down our current options
by considering the case where f is the zero function. Then (fg)(t) := f(t)g(t) = 0g(t) = 0, and
since fg is a constant function, the derivative function (fg)′ must be the zero function. This fails
to be captured by the first two options: c1(f

2)′+ c1(g
2)′ and c3ff

′+ c4gg
′, because we may choose

the function g so that each expressions are not the zero function. The only possibility left is the
formula (fg)′ = c5f

′g + c5fg
′.

Once again we will examine a simple case to find the dimensionless constant c5. Define f to be
the function t 7→ t and let g := 1, the constant function t 7→ 1. Then fg(t) := f(t)g(t) = t · 1 = t,
and so (fg)′ = 1. On the other hand, since f ′ = 1 and g′ = 0, we find that

1 = (fg)′ = c5f
′g + c5fg

′ = c5 · 1 · 1 + c5 · t · 0 = c5 + 0 = c5.

Therefore, the dimensionless constant c5 is one, and we have the product rule:

Product Rule: (fg)′ = f ′g + fg′.

Finally, we discuss the division operation. Consider two functions f and g. Suppose g(0) = 0;
then f(0)/g(0) is undefined, and so f/g cannot be defined. We cannot divide function f by function

6We will equate a function’s dimension with the dimension of the function’s outputs.
7More succinctly, fg : t 7→ f(t)g(t), or equivalently, (fg)(t) := f(t)g(t).
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g if g outputs the value 0 at any point in time. To prevent this, we will need to assume that g is
always nonzero, so that for each t, the value 1/g(t) is defined. By cancellation, the product function(

f
g

)
g = f . Apply the product rule to the product function

(
f
g

)
g to get

f ′ =

([
f

g

]
g

)′

=

(
f

g

)′

g +

(
f

g

)
g′.

This gives us an equation f ′ =
(

f
g

)′
g + fg′

g that we can solve for
(

f
g

)′
. Subtract the second term

in the right side from both sides of the equation to get

f ′ − fg′

g
=

(
f

g

)′

g.

Now, multiply both sides by the function 1/g and we have

f ′

g
− fg′

g2
=

(
f

g

)′

.

Since f ′

g = f ′g
g2 , the left side can be written as one expression: f ′g−fg′

g2 . The rule for division is then

Quotient Rule:

(
f

g

)′

=
f ′g − fg′

g2
.

Power rule

Next, we examine functions of the form f : x 7→ xk, where k is a natural number.8 We are
free to choose the dimension of our input variable. To change things up, this time let us assume a
dimension of Length for the input x. The outputs of function f will then have dimension Lengthk.
This means that the derivative of f will have dimension Lengthk−1.9 Our simplest guess is then

f ′(x) = cxk−1.

Now let us try a few examples. If k = 0, then f(x) = x0 = 1 by convention, and so f(x) = 1, with
f ′(x) = 0 by the constant rule. If k = 1, then f(x) = x1 = x, and so f(x) = x, with f ′(x) = 1x0.
If k = 2, then f(x) = x2, and we apply the product rule to get f ′(x) = (x · x)′ = 1 · x+ x · 1 = 2x1.
If k = 3, then f(x) = x3, and applying the product rule gives

f ′(x) = (x · x2)′ = 1 · x2 + x · (x2)′ = x2 + x · 2x1 = x2 + 2x2 = 3x2.

We see that the constant c depends on the value of k, so we will take c to be a dimensionless
function of k. In particular, c(0) = 0, c(1) = 1, c(2) = 2, and c(3) = 3. The pattern appears to be
c(k) := k and so our final guess is that

(xk)′ = kxk−1. (2.1)

8Natural numbers are numbers we use to count the number of objects with. They consist of: 0, 1, 2, 3, . . . .
9This is because Lengthk/Length equals Lengthk−1.
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There is every possibility that this formula breaks down and fails to work for some value of k > 3.
So let S denote the collection of natural numbers for which Formula 2.1 above fails to hold.

Ideally the collection S is an empty collection, but if it is not, then there will be a natural
number in the collection S which is the smallest.10 Call this number n. Since n is in the collection
S, our formula will fail to hold for the number n. However, because the number n − 1 is smaller
than n, it is not in the collection S. Thus our Formula 2.1 will work for the natural number n− 1,
giving us (xn−1)′ = (n− 1)xn−2. Applying the product rule to the identity xn = x ·xn−1 and using
our formula (xn−1)′ = (n− 1)xn−2 gives the following.

(xn)′ = (x · xn−1)′ = 1 · xn−1 + x(xn−1)′ = xn−1 + x(n− 1)xn−2 = xn−1 + (n− 1)xn−1 = nxn−1

And we see that (xn)′ = nxn−1, but this is simply Formula 2.1 from before! The formula works
for the number n, meaning that n could not have been in the collection S. Since the collection of
natural numbers S has no smallest element, S must be an empty collection.

We conclude that all natural numbers obey our formula! Therefore, for each natural number k

Power Rule: (xk)′ = kxk−1.

And that concludes our introduction to the differentiation rules. Things may have gotten hairy
here and there, but the main point is that (i) differentiation rules are far from arbitrary, and are
the simplest thing that one could come up with, and (ii) you could have come up with them if you
wanted to, without knowing any calculus!

In order to obtain the power rule, we made the reasonable assumption (called an axiom) that
a nonempty collection of natural numbers must have a smallest natural number. This assumption,
called the well-ordering principle, together with the (also very reasonable) assumption that
each nonzero natural number n has a “predecessor” n − 1, can be used to prove many results in
mathematics, both in calculus and elsewhere. The two combinations are also widely used (in an
equivalent form) outside of mathematics, for example to prove the correctness of many algorithms.

Challenge 5 Use the well-ordering principle to show that if we have n functions f1, f2, . . . , fn,
for some positive natural number n, then (f1 + f2 + · · · + fn)

′ = f ′
1 + f ′

2 + · · · + f ′
n. This is also

called the sum rule for derivatives.

Polynomials

Combining the sum rule and the power rule allows us to find the derivatives of a large class
of functions. For example, it is straightforward to calculate the derivative of f : n 7→ 3600n5 +
70000n4 + 42n+ 9 and g : k 7→ k2 + k. Such functions are examples of polynomials.

A polynomial of degree m (on the variable □) is an expression of the form

cm□m + cm−1□
m−1 + cm−2□

m−2 + · · ·+ c2□
2 + c1□+ c0,

where the coefficients cm, cm−1, . . . , c1, c0 are allowed to be any number, including 0, with the
exception of cm, which must be nonzero. A polynomial of degree at mostm includes all polynomials
of degree less than or equal to m.

10This number will be greater than 3 because we checked the formula up until the number 3.
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The expression 3600n5 +70000n4 +42n+9 is a polynomial of degree 5 (on the variable n), and
the expression k2 + k is a polynomial of degree 2 (on the variable k).

It will be convenient to introduce the following notation, called the summation notation. For

the natural numbers p and q with p ≤ q, the expression

q∑
♢=p

h(♢) means h(p)+h(p+1)+ · · ·+h(q).

In particular,
∑p

♢=p h(♢) := h(p). Using this notation, a polynomial of degree m on the variable

□ may be written compactly as
∑m

♢=0 c♢□
♢, or equivalently as

∑m
♢=0 cm−♢□m−♢. The latter

respects the ordering of each term in our definition, while the former reverses it from back to front.

If f is a polynomial of degree m on the variable t, then by the sum rule,

f ′ =

(
m∑
i=0

cit
i

)′

=

m∑
i=0

(cit
i)′.

Applying the product rule on the constant function ci : t 7→ ci and the function ti : t 7→ ti gives
(cit

i)′ = ci(t
i)′. By the power rule (ti)′ = iti−1, and so

f ′

(
m∑
i=0

cit
i

)′

=

m∑
i=0

(cii)t
i−1. (2.2)

This is a fairly symbol heavy way to write down what we already knew. For example, (3600n5 +
70000n4 + 42n + 9)′ = 3600 · 5n4 + 70000 · 4n3 + 42 and (k2 + k)′ = 2k + 1. The key idea is that
we can take any polynomial, calculate its derivative term by term, then add them up to get the
derivative of the polynomial. That is all that Formula 2.2 is saying.

Challenge 6

(a) Write the expression 13 + 23 + 33 + · · ·+ k3 using the summation notation.

(b) Using (1 +X)2 := (1 +X)(1 +X) = 1 +X +X +X2 = 1 + 2X +X2, expand (1 +X)3.

(c) Verify that (1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + · · ·n3 holds when n = 1 and n = 2.

(d) Use the well-ordering principle to show that the equation (1+2+3+· · ·+n)2 = 13+23+· · ·n3

holds for each natural number n. [Hint: use the two identities from part (b).]

2.2 What is a Velocity?

The definition

We have worked out the arithmetic of derivatives, so now it is time to figure out what a derivative
is. Recall that the notion of a derivative generalizes the idea of a velocity. Why do we care about
velocity? We usually care about our velocity when we are in a car, so let us start from there. Why
is there a speedometer in every car? I suppose it can help us avoid getting speeding tickets. But
what if we didn’t have to worry about tickets? Speedometers are there so that we can gauge when
we will get to our destination. If our speedometer says 70 km/hr (or mi/hr if you wish), then we
know that if we go for an hour at that speed, then we will be able to cover a distance of 70 km.

Let us denote our current time by t, our position function by f , our current velocity of 70 km/hr
by v, and the time interval we wish to look into the future (an hour) by α. If we manage to travel
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at exactly 70 km/hr for the next hour without any change in our velocity, then we can calculate
our future position an hour later using our current position with the following formula.

f(t+ α)︸ ︷︷ ︸
future pos.

= f(t)︸︷︷︸
current pos.

+ v · α︸︷︷︸
travel dist.

In reality, it is impossible to stick to an exact constant velocity for an hour. Because our velocity
will deviate during the hour, the correct formula will be given by

f(t+ α)︸ ︷︷ ︸
future pos.

= f(t)︸︷︷︸
current pos.

+ v · α+X︸ ︷︷ ︸
projected travel dist.

(2.3)

where X is the error in our projection caused by our velocity deviations during the next hour.

What can we say about our velocity deviations? That there will be deviations happening
constantly, and so it makes no sense to try and track them all down! So instead, let’s simplify
and try to summarize our velocity deviations in a sinlge number. We cannot keep track of all the
velocity deviations, but we know that their cumulative effect is given by the distance error X. We
also know that the longer into the future we try to predict (3 hours for example), the greater the
error. Conversely, the shorter we look into the future (3 minutes for example), the lesser the error.
Hence the length of the time interval α will is correlated with how much velocity deviations occur.
X is a Length and α is a time, and so X/α is a speed, which is what we are looking for to summarize
our velocity deviation. We will define the rogue velocity to be X/α, a quantity we will use to
summarize the amount of velocity deviations we experience during time interval α.

What can we say about our rogue velocity X/α? If we choose smaller values of α, then it
becomes smaller. How small can we choose α? Any positive number α is fair game because then
Equation 2.3 can be used to make a projection into the future, which is the whole point of wanting
to know velocity. If α is negative, then we are no longer making a projection, we are looking into
the past, so that’s no good. Similarly, if α is zero, then we are no longer making a projection, we
are looking into the present, so that’s no good either. So as long as α is positive, we can make it
as large or as small as we wish. Except, we don’t want α to be large, because our projections will
be garbage, so we want α > 0 to be small.

Now, suppose we call a friend and ask what they are doing. The question we ask is “what
are you doing right now?”. But what we mean is not the same as the words we say. “What are
you doing right now?” is short for, “what were you doing before you picked up the phone?”
Otherwise, our question will always be answered with: “I’m on the phone” or “I’m talking to you”.
Duh, we meant before that!

We will do the exact same thing. We know that rogue velocity decreases as we drop α. But
drop to what? There is no smallest positive number to drop to.11 To get around the issue of
having no smallest positive number to drop to, we will say that we “drop α to zero” (just as we
say “what are doing right now” to mean “what were you doing before picking up the phone?”).
Using this language, we will say: “the rogue velocity drops to zero as we drop α to zero”, with
the understanding that we are not actually taking anything to zero. In symbols we will write: as
α→ 0, X/α→ 0, which we read as “as α drops to 0, (rogue velocity) X/α drops to 0.

We will need to write this so often that an even simpler notation will be very helpful. We will
write □ = oα(1) to mean that the quantity □ has the property that as α→ 0, □→ 0. Hence rogue

11If a > 0 is a candidate for the smallest positive number, then a/2 is an even smaller positive number.
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velocity X/α = oα(1), because it has the property that as α→ 0, X/α→ 0. Multiplying both sides
of the equation by α, we see that the distance error X = α · oα(1).

We now take our projection Formula 2.3 and replace error X by α ·oα(1), because X = α ·oα(1).

Definition 1. A function f is differentiable at input t if there is a number v such that the
following equation holds.

f(t+ α) = f(t) + v · α+ α · oα(1)

If such a number v exists, then v is called the derivative of f at t. We will also denote the
derivative of f at t using the notation f ′(t). If function f is differentiable at every input, then f is
said to be a differentiable function, and the derivative of f is denoted by the symbol f ′.12

To recap, the whole point of wanting to know our velocity is to predict our future position at α
(minutes, say) into the future. Our current velocity v times the time interval α tells us how much
we expect to have moved, but we recognize that there will be an error X caused by our velocity
deviations away from v during our travel. To quantify the velocity deviations, we define a rogue
velocity X/α, which has the property of droping to 0 as we drop the time interval α to 0. Hence
X/α = oα(1), where the symbol oα(1) denotes a quantity that drops to 0 as we drop α to 0.

Time

When we are observing objects traveling across a line (like a straight path/road), there is a
notion of what is located on the right and what is located on the left. The notion of orientation,
what direction is left and what direction is right, is not unique. For example, if we are having a
face to face conversation, your right is my left and my right is your left.

When we say time, we will be using it in the exact same manner as position. Just as we can
measure lengths and distances, we can measure time differences. Just like we can travel left to right
or right to left, we can go from a smaller time value to a larger time value, but also from a larger
time value to a smaller time value. Just as the orientation of what is left versus right is not unique
and is a matter of convention, the flow of time is not unique and is a matter of convention.

Therefore, our discussion of predicting position “in the future” must work for folks whose flow
of time is the opposite of ours, and are thus (in our view) calculating position in the past. In our
view, they will be taking negative α values then “upping” it to 0, but everything will work in the
same manner. Since dropping α to 0 and “upping” α to 0 are the same action, just in different
time flow conventions, we will denote both by the symbol α→ 0.

To really drive the point home that α can be taken to be either positive or negative, we will
write the defining equation of a derivative at an input t as

f(t+ α) = f(t) + f ′(t)α+ |α|oα(1). (2.4)

This modification does not change the equation and its interpretation. The symbol |a| is used to
denote the absolute value of a number a, and is defined to be a if a is positive or zero, and −a
if a is less than zero. For example, the absolute value of −2, written |−2| is 2, while the absolute
value of 2, written |2| is still 2.13 An absolute value function |x| is the function x 7→ |x|, which

12Since t+ α is an input of f , α must have the dimension of an input of f . Furthermore, for f(t) + v · α to make
sense, v ·α must have dimension f(t). Therefore, a derivative has a dimension of f divided by its input, as expected.

13Thus the absolute value of a nonzero number is always positive (the absolute value of 0 is 0).
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switches the sign of negative inputs. Because the value |a| changes only when a is negative, writing
the definition of the derivative as Equation 2.4 reminds us that α can be negative.

Little oh of one

Since we have a new object oα(1) we best describe how to do arithmetic with it. It is going to
be so simple and magical: if we have oα(1) and add/subtract/multiply another oα(1) to it, it does
nothing! Even better, if we multiply a constant to oα(1), it stays the same. How could such a thing
be possible? Let’s try and build some intuition about the behavior of oα(1).

From now on, we will simplify the notation even further by omitting the subscript α and writing
o(1). For example, we will write the definition of a derivative at an input t as

f(t+ α) = f(t) + f ′(t)α+ |α|o(1). (2.5)

This is because we will always be taking α→ 0, and so the subscript α is redundant. Rest assured,
if there is a potential for confusion, then I will write down the necessary subscripts.

Recall that if something is denoted by the symbol o(1), then it drops to 0. Imagine a sleigh on
a snowy hill headed towards the ground level, which we take to be 0 (meters). We will denote the
position of our sleigh over time by the symbol X, which satisfies X = o(1). If we moved our sleigh
and placed it on top of a hill twice as high or twice as small, the sleigh will still drop towards the
ground. That is, 2X = o(1) and (1/2)X = o(1). In fact, the number 2 is not special, for we could
have picked any positive number. Hence, if c is a positive constant, then cX = o(1). We will thus
write that for each positive constant c, we have c · o(1) = o(1).

If the multiplying factor is not a constant, this may no longer be true! Indeed, (1/X) ·X = 1 ̸=
o(1) because a nonzero constant (like 1) will never drop to 0, it’s a nonzero constant !

Suppose Y ≤ X and X = o(1). Can we conclude that Y = o(1)? Suppose Y denotes the
location of a spectator, moving about underground (thus Y < 0) and never approaching the ground
level, hence Y ̸= o(1). Then Y ≤ X, but Y ̸= o(1). What if we look at the absolute value |Y |
instead and pretend that the spectator is on top of the hill? Now we can see that the spectator’s
location is not dropping to 0, because the spectator is not on a sleigh rolling down, So one way to
check if Y = o(1) is to see if |Y | ≤ o(1).

One of the advantages of using o(1) notation is that absolute values are built in. To see this, we
use the fact that the orientation of direction is not unique. We will flip the convention of up and
down and denote everything higher than the base of the hill with a negative sign. Thus a hill of
height 5 meters is now of height−5 meters. This means that the position of our sleigh is now−X, yet
this will not change the fact our sleigh will still drop down towards the ground. Hence −X = o(1),
and so −o(1) = o(1).14 Since c · o(1) = o(1) for positive c, we see that −co(1) = −o(1) = o(1).
Therefore, c · o(1) = o(1) for each constant c (whether negative, positive or zero).

Suppose we have two sleighs that arrive at the bottom of the hill at the same time, whose
positions we denote by X and Y respectively. We know that X = o(1) and Y = o(1). Sum
their position functions to define Z := X + Y . If Z ̸= o(1), that means Z does not drop to 0;
suppose Z never drops below k > 0. But X and Y both stay below height k/2 after some time
has passed because they drop to the ground, meaning that their sum will drop below k. Hence
Z = X+Y = o(1) and so o(1)+o(1) = o(1). This is also consistent with the fact that 2·o(1) = o(1).

14As a consequence |α|o(1) and α · o(1) are interchangeable, regardless of the sign of α.
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Using −o(1) = o(1) and o(1)+ o(1) = o(1), we have o(1)− o(1) = o(1)+ o(1) = o(1). Therefore,
o(1) − o(1) ̸= 0. This makes sense because X = o(1) and 0 = o(1) (0 drops to 0 for sure!), but
X − 0 = X ̸= 0. Here we find a peculiarity: 0 = o(1), yet o(1) ̸= 0. Confusing? Not really, because
0 = o(1) means 0 falls to 0, which is true. But saying anything is equal to 0, as in o(1) ̸= 0, is false
unless that thing is itself 0. Similarly, X = o(1) means X drops to 0, but o(1) ̸= X because the
quantity represented by the notation o(1) is not necessarily X.

Finally, the product satisfies o(1)o(1) = o(1). To check this, set our origin for the time axis to
when our sleigh reaches the ground. Then the sleigh reaches the ground at t = 0, and is dropping
down during negative time. Suppose our sleigh always remains below the height of 3 meters above
ground after t = −5 seconds. In other words, from t = −5 and onwards, X < 3. Now take
α = −5 and then up it to 0. Ignoring everything that happened before time t = −5, we have
Xo(1) ≤ 3 · o(1) = o(1), and since X = o(1), we have o(1)o(1) = o(1).

Our findings, summarized below, will simplify calculations greatly.

(a) o(1) □ o(1) = o(1), where □ can be +, −, or ×. If c is a constant, then c · o(1) = o(1).

(b) To check if f = o(1), put it on the slope! If |f | ≤ o(1), then f = o(1).

Basic properties

We will now check that our definition of the derivative satisfies the arithmetic rules we deduced
at the beginning. It will require more work than dimensional analysis, but everything is still just
arithmetic: adding, subtracting, multiplying, and dividing. The twist is that we will be using
arithmetic with o(1), but that makes things simpler! Remember, if we multiply o(1) with itself or a
constant (a derivative of a function at a point is a constant), then the result is still o(1). But if we
multiply o(1) with a variable (like α, which we want to drop to 0), then we cannot simplify further.

Uniqueness of derivatives

When we speak of a velocity of an object, we are speaking about the velocity of an object. That
is to say, there should be one unique velocity of an object. Suppose a function f has a derivative of
a at t. This means that the equation f(t+ α) = f(t) + aα+ |α|o(1) holds. Is it possible that there
is a different number that satisfies the above equation? What if there is a number b, with a ̸= b
such that the following holds?

f(t+ α) = f(t) + bα+ |α|o(1)

This would be a big problem, because we will be unable to agree on exactly which derivative f ′(t)
we are talking about: do we mean the number a or the number b? Is our definition too weak to
rule such cases out?

Let us check and see. Suppose a function f is differentiable at t with derivative a and b. Here,
f is a function, while t, a, and b are all numbers. To show that a derivative is unique, it is sufficient
to show that a− b = 0. The definition of a derivative gives us the two equations

f(t+ α) = f(t) + aα+ |α|o(1),
f(t+ α) = f(t) + bα+ |α|o(1).

Equate these two to get f(t) + aα+ |α|o(1) = f(t) + bα+ |α|o(1). Subtract the terms f(t) and bα
from both sides and we have

aα− bα+ |α|o(1) = |α|o(1).
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Recall that −o(1) and o(1) are the same. We divide both sides by the nonzero term α to get

a− b+ o(1) = o(1).

Denote the left side of the equation above by A and the right side by B. Now take α → 0 and
observe that A → (a − b) and B → 0. Since A = B, we see that a − b = 0. Whenever derivatives
exist, we know that they must be unique!

Constant rule

Let f : x 7→ c be a constant function. Since 0 = o(1), we have 0 = |α|o(1). Then for each t,

f(t+ α) = c = c+ 0 + 0 = f(t) + 0 · α+ 0 = f(t) + 0 · α+ |α|o(1).

This is true for any input t. Therefore constant functions are differentiable, and the zero function
is its derivative, as we expected.

Sum rule

Suppose functions f and g are differentiable at t. By the definition of the derivative,

f(t+ α) = f(t) + f ′(t)α+ |α|o(1), g(t+ α) = g(t) + g′(t)α+ |α|o(1).

Taking the sum gives

f(t+ α) + g(t+ α) =
(
f(t) + f ′(t)α+ |α|o(1)

)
+
(
g(t) + g′(t)α+ |α|o(1)

)
.

Since |α|o(1) + |α|o(1) = |α|
(
o(1) + o(1)

)
= |α|o(1), we have

(f + g)(t+ α) := f(t+ α) + g(t+ α) =
(
f(t) + g(t)

)
+ [f ′(t) + g′(t)]α+ |α|o(1).

Therefore, the sum function (f+g) : t 7→ [f(t)+g(t)] is differentiable at t, with derivative (f ′+g′)(t).

Product rule

Suppose functions f and g are differentiable at t. By the definition of the derivative,

f(t+ α)g(t+ α) =
(
f(t) + f ′(t)α+ |α|o(1)

)
·
(
g(t) + g′(t)α+ |α|o(1)

)
.

The product is simple, but will look much more complicated than it is! The product multiplies out
to:

f(t+ α)g(t+ α) = f(t)g(t) + [f ′(t)g(t) + f(t)g′(t)]α+ f ′(t)g′(t)α2 + |α|Ao(1) (2.6)

where A := f(t)+ g(t)+ f ′(t)α+ g′(t)α+ |α|o(1). Here is a friendly reminder: f(t), g(t), f ′(t), g′(t)
are all constants. Because we multiply A to o(1), all the constants vanish, and we get A = α+αo(1).
Furthermore, the term α2 = αo(1) because if we divide it by α and take α → 0, then what’s left
(just α) drops to zero. Equation 2.6 is thus

f(t+ α)g(t+ α) = f(t)g(t) + [f ′(t)g(t) + f(t)g′(t)]α+ f ′(t)g′(t)αo(1) + |α|[α+ αo(1)]o(1)

= f(t)g(t) + [f ′(t)g(t) + f(t)g′(t)]α+ αo(1) + α2o(1) + α2o(1)o(1)

= f(t)g(t) + [f ′(t)g(t) + f(t)g′(t)]α+ αo(1) + αo(1)o(1) + αo(1)o(1)o(1).
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Since o(1)o(1) = o(1) and αo(1) = |α|o(1), we have

f(t+ α)g(t+ α) = f(t)g(t) + [f ′(t)g(t) + f(t)g′(t)]α+ |α|o(1)

and so the product function is differentiable at t with derivative f ′(t)g(t) + f(t)g′(t). Whew!

Quotient Rule

Just as we saw before, the rule for division follows from the product rule. Suppose functions f
and g are differentiable at a, and g(a) is nonzero. Furthermore, assume that the function (f/g) :
x 7→ f(x)/g(x) is differentiable at a. Then we can apply the product rule to f = (f/g) · g to obtain

f ′(a) = (f/g)′(a) · g(a) + (f/g)(a) · g′(a).

This gives us the quotient rule (f/g)′(a) = f ′(a)g(a)−f(a)g′(a)
[g(a)]2 .15 Taking f : x 7→ 1 gives us the

reciprocal rule: if 1/g is differentiable at a, then (1/g)′(a) = −g′(a)/[g(a)]2.

2.3 The Chain Rule

Dual numbers

Let us take a second look at our definition of the derivative of function f at t:

f(t+ α) = f(t) + f ′(t)α+ |α|o(1).

The term α is not exactly a number—it is, until we drop it to zero.16 So really, we are using the
term α to mean the same thing as a · o(1), where a is the starting value of α.17 So let us substitute
the term α with a · o(1) into the definition of the derivative:

f(t+ a · o(1)) = f(t) + af ′(t)o(1) + |a|o(1).

Since f ′(t) is a constant, af ′(t)o(1) = o(1), and thus the term af ′(t)o(1) can be absorbed into
the final term |a|o(1). But that’s not what we want! We need the term af ′(t)o(1) to stay, because
we are defining f ′(t) to satisfy the equation above. Instead, we will let the term af ′(t)o(1) absorb
the term |a|o(1). This gives us a simpler equation:

f(t+ a · o(1)) = f(t) + af ′(t)o(1).

That’s better, but notice that we have no α quantity for us to drop. Since the notation o(1)
makes little sense, we will replace the notation o(1) with the Greek letter ϵ to write:

f(t+ aϵ) = f(t) + af ′(t)ϵ. (2.7)

Since we are no longer taking α → 0, the term ϵ is no longer o(1). But the number ϵ should
still preserve the key characteristics of the object o(1). The three properties of o(1) that we have

15It is much easier to remember the rule as (f/g)′ = (f ′g − fg′)/(g2). Or to derive it yourself!
16This is why we are using a Greek letter to denote it. It is not like the other numbers.
17Indeed a · o(1) = o(1), but let us leave the constant for now.
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needed in our derivations so far were: c · o(1) = o(1) for each constant c, o(1) + o(1) = o(1), and
o(1)o(1) = o(1). We do not want to preserve the first property, because if we do, then Equation 2.7
becomes f(t+aϵ) = f(t)+af ′(t)ϵ = f(t)+ϵ, and we have lost the crucial f ′(t) term. In addition, we
do not want to preserve the second property: if ϵ+ ϵ = 2ϵ = ϵ, then we lose the uniqueness property
of derivatives, for if v is a derivative satisfying Equation 2.7, then so does 2v (the 2 is absorbed
by ϵ). The only requirement left is ϵ2 = 0. This is also a problem, because the only number that
squares to a zero is zero. Hence ϵ = 0, in which case Equation 2.7 becomes f(t) = f(t), useless!

Is this approach doomed to fail? Let us backtrack a bit. We know that we cannot bring over
the properties c ·o(1) = o(1) and o(1)+o(1) = o(1). However, the only objection with bringing over
o(1)o(1) = o(1) is that there is no nonzero number that squares to zero. From the very beginning,
we have tried to be more lax on what we mean by a number—indeed, a unit is not a number, but
doing arithmetic with it as if it were turned out to be very useful! We will take the same approach
and agree that ϵ is no ordinary number. We will define ϵ to be a nonzero quantity such that ϵ2 = 0.

A dual number is a number a + bϵ for ordinary numbers a and b and a symbol ϵ such that
ϵ ̸= 0 but ϵ2 = 0.18 Using dual numbers, the derivative of a function is defined by Equation 2.7
from before. A function f is differentiable at t if the following equation holds for nonzero a:

f(t+ aϵ) = f(t) + af ′(t)ϵ

and the number f ′(t) is called the derivative of f at t.

Is this definition any good? Is it even correct? Let us check and see if this new definition obeys
the same rules as before. Uniqueness is easy to check: if ♣ and ♠ are derivatives of f at t, then
f(t) + a♣ϵ = f(t) + a♠ϵ. Subtract f(t) from both sides and divide by a and ϵ which are both
nonzero to get ♣ = ♠.

The constant rule is also easy to check: if f is a constant function, then

f(t+ aϵ) = f(t) + a · 0 · ϵ

and so f has the zero derivative everywhere.

Our new definition really starts to shine when verifying the sum rule and the product rule. The
sum rule is verified as follows.

(f + g)(t+ aϵ) = [f(t) + af ′(t)ϵ] + [g(t) + ag′(t)ϵ] = [f(t) + g(t)] + a [f ′(t) + g′(t)] ϵ

The product rule, a monstrosity using our previous definition, is now quite manageable:

(fg)(t+ aϵ) = [f(t) + af ′(t)ϵ] [g(t) + ag′(t)ϵ] = f(t)g(t) + a [f ′(t)g(t) + f(t)g′(t)] ϵ+ a2f ′(t)g′(t)ϵ2

= [f(t)g(t)] + a [f ′(t)g(t) + f(t)g′(t)] ϵ.

So it seems like our new definition is all good to go! Let us go one step further. There is
one important operation that we cannot do with units, but we can do with functions. This is the
chaining operation: we can use one function as an input to another function. Suppose we chain
the outputs of a function g into another function f . We write this using the notation f ◦ g. Let us
assume that function g is differentiable at t and that function f is differentiable at g(t). A natural

18For now we will have to take the existence of the object ϵ on faith.
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question to ask is whether the chained function f ◦ g is differentiable at t, and if so, what is the
derivative? Let us check and see!

As we have done before, we consider the expression (f ◦ g)(t + aϵ), which (by differentiability
of g at t) is the same thing as f

(
g(t) + ag′(t)ϵ

)
. Let us denote ag′(t) by the letter ā and g(t)

by t̄. Since function f is differentiable at g(t), by the new definition of a derivative, f
(
t̄ + āϵ

)
=

f
(
t̄
)
+ āf ′(t̄)ϵ = f

(
g(t)

)
+ ag′(t)f ′(g(t))ϵ. We reorganize what we have found in the following line.

(f ◦ g)(t+ aϵ) = f
(
g(t) + ag′(t)ϵ

)
= f

(
g(t)

)
+ ag′(t)f ′(g(t))ϵ = (f ◦ g)(t) + a(f ′ ◦ g)(t) · g′(t)ϵ

So we see that if g is differentiable at t and f is differentiable at g(t), then the chained function
(f ◦ g) is differentiable at t, with (f ◦ g)′(t) = (f ′ ◦ g)(t) · g′(t). This is called the chain rule.

Dual numbers are incredibly useful because they simplify calculations of derivatives enormously.
Nevertheless, they utilize a suspect object ϵ which is nonzero while squaring to zero. Since we do
not yet have the means to understand exactly what such an object is, we will stick to our previous
definition of the derivative using o(1) for the rest of the book.

Absolute values

We are going to have to verify our new result (the chain rule) independently using our definition
of the derivative. This will require some preparation. As a first step, let us return to the absolute
value function.

The absolute value function, which takes in a number and outputs the number’s absolute value,
has two important properties called the triangle inequality and homogeneity.

The triangle inequality states that for two numbers a and b, the inequality |a+ b| ≤ |a|+ |b|
holds. Notice that if a and b are both positive or both negative, or at least one of them is zero,
then |a+ b| = |a|+ |b|. The inequality holds because the inequality becomes an equality.

The only remaining possibility is when exactly one of the numbers a, b is positive and the other
is negative. For definiteness, let a > 0 and b < 0. There are two possibilities: either a + b ≥ 0 or
a+ b < 0. In the former case,

|a+ b| = a+ b < a+ (−b) = |a|+ |b|

while in the latter case,

|a+ b| = −(a+ b) = −a− b = −a+ (−b) = −a+ |b| < |a|+ |b|.

This completes our verification of the triangle inequality.

Homogeneity of the absolute value function states that for two numbers a and b, we have
|ab| = |a||b|. If at least one of the numbers is zero, then the result is clear. The full result is verified
by trying out all three cases: (i) a ≥ 0 and b ≥ 0, (ii) a ≤ 0 and b ≤ 0 (iii) exactly one of the
numbers is positive, while the other is not.

Challenge 7

(a) By exhausting the cases (as in the proof of the triangle inequality), show that |ab| = |a||b|.
(b) If b is nonzero, show that |a/b| = |a|/|b|.
(c) Show that |c| − |d| ≤ |c− d|. [Hint: The triangle inequality says that |a+ b| − |b| ≤ |a|.]
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The chain rule

Recall that if we have two functions f and g, and use the output of g as the input to f , then the
chained function is written f ◦ g. Thus f ◦ g : x 7→ f(g(x)) and the output of the chained function
for input x is denoted by (f ◦ g)(x) or by f(g(x)).

Let us bring in differentiation once again. Suppose function g is differentiable at input t and
function f is differentiable at input g(t). Is the chained function f ◦ g differentiable at a? An
equivalent question is: is there some number ♣ that satisfies the equation below?

(f ◦ g)(t+ α) = (f ◦ g)(t) +♣ · α+ |α|oα(1) (2.8)

Let us begin with what we know. Differentiability of the function g at t and differentiability of
function f at s := g(a) gives

g(t+ α) = g(t) + g′(t)α+ |α|oα(1), (2.9)

f(s+ β) = f(s) + f ′(s)β + |β|oβ(1) (2.10)

where oα(1) → 0 as α → 0 and likewise, oβ(1) → 0 as β → 0. The subscripts are back because
there are now two variables at play (α and β), and as a result, the notation o(1) is ambiguous.

We need to chain these expressions together, where the former is the input to the latter. In
particular, we are looking for an expression for (f ◦ g)(t + α). Since the input of the “outer”
function f is the value g(t + α), this is the chain in our link. Define β := g(t + α) − g(t) so that
g(t+α) = g(t)+β = s+β, which is exactly what we need to connect the two functions in Equations
2.9 and 2.10.

By Equation 2.9, β := g(t + α) − g(t) = g′(t)α + |α|oα(1), where g′(t) is some constant. Since
g′(t)α = oα(1), when we take α→ 0, then β → 0 too. Therefore, oβ(1) = oα(1).

Now let us consider the chained function f ◦ g together with our link. We have

(f ◦ g)(t+ α) = f(s+ β) = f(s) + f ′(s)β + |β|oβ(1)
= (f ◦ g)(t) + f ′(s) [g′(t)α+ |α|oα(1)] + |β|oβ(1)
= (f ◦ g)(t) + [(f ′ ◦ g)(t) · g′(t)]α+ f ′(s)|α|oα(1) + |β|oβ(1)
= (f ◦ g)(t) + [(f ′ ◦ g)(t) · g′(t)]α+ |α|oα(1) + |β|oβ(1)

where we have used the fact that f ′(s) is a constant to obtain the final equality. In order to obtain
Equation 2.8, all we need to do is to check that |α|oα(1) + |β|oβ(1) = |α|oα(1).

It suffices to show that |β|oβ(1) = |α|oα(1), because then |α|oα(1) + |β|oβ(1) = |α|oα(1) +
|α|oα(1) = |α|oα(1). We will use the two properties of an absolute value function from earlier.
Using the triangle inequality |a+ b| ≤ |a|+ |b| and homogeneity |ca| = |c||a|, we have

|β| = |g′(t)α+ |α|oα(1)| ≤ |g′(t)||α|+ |α||oα(1)| = |g′(t)||α|+ |α|oα(1).

Since oβ(1) = oα(1), we have

|β|oβ(1)
|α|

≤
(
|g′(t)||α|+ |α|oα(1)

)oβ(1)
|α|

= oβ(1) + oα(1)oβ(1) = oα(1) + oα(1)oα(1) = oα(1).

Recall that if |f | ≤ o(1), then f = o(1). Since |βoβ(1)/α| ≤ oα(1), we have |β|oβ(1)/|α| = oα(1),
as desired. Equation 2.8 is satisfied and we are done!
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Theorem 2 (The Chain Rule). If g is differentiable at t and f is differentiable at g(t), then f ◦ g
is differentiable at t with

(f ◦ g)′(t) = (f ′ ◦ g)(t) · g′(t).

What if we want to chain more than two functions? Suppose f, g, and h are differentiable
functions and we want to find the derivative of the function that is the chain of all three function.
First, we must resolve some ambiguity: is f ◦(g◦h) the same as (f ◦g)◦h? If not, then we might have
two different derivatives for the composition of three functions, which is a problem! Luckily, when
chaining functions (also called function composition), we are guaranteed that f◦(g◦h) = (f◦g)◦h.
This guarantee is called associativity, and so function composition is said to be associative. To
see this, pick some input x. Then [f ◦ (g ◦ h)] (x) = f ((g ◦ h)(x)) = f (g (h(x))). But this is the
same as [(f ◦ g) ◦ h] (x) = (f ◦ g) (h(x)) = f (g (h(x))).

Therefore, to take the derivative of a composition of three functions f◦g◦h, we may use the chain
rule to get ([f ◦ g] ◦ h)′ = ([f ◦ g]′ ◦ h) · h′ or equivalently (f ◦ [g ◦ h])′ = (f ′ ◦ [g ◦ h]) · [g ◦ h]′. Both
will give the same answers, so we choose whichever one is more convenient. Just as the chaining
of three functions can be reduced to the case of two functions, the case of any finite number of
function composition can also be handled by the chain rule.

2.4 Higher Derivatives

No one is stopping us from taking derivatives repeatedly on a function, as long as the derivative
exists at each step. The interpretation is that if we wish to know an object’s acceleration, we
need to calculate the rate of change of the object’s velocity. The second derivative of a function is
a generalization of the concept of acceleration. The second derivative of a function f is denoted by
the symbol f ′′ and it is the derivative of the function f ′. The derivative of f ′′, if it exists, is written
f (3). The expression f (k)(a) for a positive integer k is the k-th derivative of function f at point a.
If k = 1, then f (1)(a) is the number f ′(a), while f (0)(a) is just the number f(a).

Challenge 8 For 0 ≤ k ≤ n, the binomial coefficient
(
n
k

)
(read “n choose k”) is the number

of ways we can choose an unordered selection of k items from n distinct items. For example, there
are 10 ways to choose 2 items from 5 elements (first we have 5 choices for the first item, then
there are 4 choices for the second item, but since the order we drew which item does not matter,
we are double counting, which we account for by dividing by 2) and so

(
5
2

)
= 10. In general,(

n
k

)
= n×(n−1)×···×(n−k+1)

k×(k−1)×···×1 . In factorial notation, where k! := k× (k− 1)× · · · 2× 1 and 0! := 1, we

have
(
n
k

)
= n!

k!(n−k)! . Observe that
(
n
0

)
=
(
n
n

)
= 1.

(a) Suppose f is a polynomial of degree n. Use the well-ordering principle to show the following.19

f(x) =

n∑
k=0

f (k)(0)

k!
xk

[Hint: if f : x 7→ 7x5 + 2x3 + 5, what is the expression above saying?]

19Since

q∑
□=p

h(□) means h(p) + h(p+ 1) + · · ·+ h(q), we have
∑1

j=0
f(j)(0)

j!
xj :=

f(0)(0)
0!

x0 +
f(1)(0)

1!
x1.
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(b) Let f : x 7→ (x+ b)n so that f(0) = bn. Use the well-ordering principle to show that

f (k)(0) = k!

(
n

k

)
bn−k.

[Hint: as with all applications of the well-ordering principle, start by finding f ′(0) and f ′′(0).]

(c) Apply the result of part (b) to part (a) to conclude that

(x+ b)n =

n∑
k=0

(
n

k

)
xkbn−k

and substitute the symbol x with the symbol a to obtain the binomial formula.

The binomial formula has a nice combinatorial interpretation when a and b are both natural
numbers. If we have a pool of k distinct items, from which we were to draw n items sequentially
with replacement, there are kn possibilities (we make n draws, where at each stage there are k
choices). Similarly, if we have a pool of k1 distinct items and a pool of k2 distinct items, from which
we were to select n items sequentially, there are (k1 + k2)

n possibilities. This is because we could
pool each pile together each into one pile of k1 + k2 distinct items.

An alternative way to count the number of possibilities is to do the actual selection algorithmi-
cally, case by case. We could pick n objects from k1, or n−1 objects from k1 and 1 object from k2. or
pick n−2 objects from k1 and 2 objects from k2, ..., or pick 0 objects from k1 and pick n objects from
k2. Adding all of these separate cases is exactly what the expression

∑n
i=0

(
n
i

)
kn−i
1 ki2 means. Since

either way of counting must give the same results, we conclude that (k1+k2)
n =

∑n
i=0

(
n
i

)
kn−i
1 ki2.

2.5 Nonexamples

Now that we have discussed some examples of derivatives, let us examine some nonexamples.

Nonexample 1: the absolute value function

Consider the absolute value function f : x 7→ |x| shown in Figure 2.3.

y

x

1

1−1

Figure 2.3: A graph of the absolute value function.

Consider the origin. For α > 0, we have f(0 + α) = |0 + α| = |0| + 1|α| = f(0) + 1α, and so
it seems like we can conclude that the absolute value function is differentiable at the origin, with
f ′(0) = 1. However, what if we take α < 0? We cannot stop anyone from taking α < 0 because
one person’s preferred orientation of the x axis can be the opposite of the other (see Figure 2.4).
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y

x

1

−11

Figure 2.4: The same figure as before, but with the x-axis swapped. Everything is the same, except
the labels of the inputs.

Then for α < 0, we have f(0 + α) = |0 + α| = −α = |0| − α = f(0) − 1α. Thus there is a
disagreement on exactly what the value of f ′(0) is, and derivatives are known to be unique. We
therefore conclude that the absolute value function is not differentiable at the origin.

Challenge 9 Recall that to use the chain rule (f ◦g)′(t) = (f ′◦g)(t) ·g′(t), we need both (f ′◦g)(t)
and g′(t) to exist. We investigate whether derivatives of chained functions can exist even if one of
the component function is not differentiable.

(a) Let f : x 7→ x2 and g : x 7→ |x|. We saw that g is not differentiable at 0 and so g′(0) does not
exist. Nevertheless, show that (f ◦ g)′(0) and (g ◦ f)′(0) both exist.

(b) The relu function (rectified linear unit) is defined by relu : x 7→ max(0, x). Sketch the
relu function. Show that on (−∞, 0), the derivative of relu is zero, while for x ∈ (0,+∞),
relu′(x) = 1. Furthermore, show that the relu function is not differentiable at 0.

(c) Let n > 1 be a natural number and let f : x 7→ xn. Show that even though the relu function
is not differentiable at 0, both (f ◦ relu)′(0) and (relu ◦ f)′(0) exist.

(d) Let f : y 7→ y − relu(y) and g : x 7→ 1
2x + 1

2 relu(x). Show that although neither f ′(0) nor
g′(0) exist, both (f ◦ g)′(0) and (g ◦ f)′(0) exist.

Nonexample 2: a step function

What is going on with the function graphed in Figure 2.5? It logs the position (denoted by the
symbol x and measured in meters from some origin) of an object over time (denoted by the symbol
t and measured in seconds). The graph suggests that our object is perfectly still at all times, yet
has managed to teleport from one location to another instantaneously.

x [m]

t [s]

1

0

Figure 2.5: Graph of a function defined by t 7→ 1 for x > 0 and t 7→ 0 for t ≤ 0.

We cannot allow such a behavior. A function cannot have zero derivative (no velocity) and



30 CHAPTER 2. DIFFERENTIATION

be a non-constant function (display motion). In this case, the problem is that our function is not
continuous at time t = 0 due to an instantaneous teleportation.

How do we know if a function is continuous? Like a differentiable function, a function is
continuous if it is continuous at each point that the function is defined. How do we know if a
function f is continuous at an input t? As with a derivative, first take some nonzero step α, which
is allowed to be either positive or negative. The difference between f(t+ α) and f(t) should then
drop to zero as we dial down α, that is, drop α→ 0.

Definition 3. A function f is continuous at an input t if f(t+ α)− f(t) = o(1).

For example, let us denote the function graphed in Figure 2.5 with the symbol g. Then for
α < 0, g(0+α)−g(0) = 0−0 = 0 = o(1), but for α > 0, we have g(0+α)−g(0) = 1−0 = 1 ̸= o(1).
Therefore, function g is not continuous at 0.

Continuity is not sufficient to guarantee differentiability, as the absolute value function demon-
strates. However, differentiable functions are always continuous. Indeed, if f is differentiable at t,
then f(t+ α)− f(t) = f ′(t)α+ |α|o(1). Drop α→ 0 and observe that f ′(t)α→ 0 and |α|o(1)→ 0,
and so f(t+ α)− f(t) = o(1) + o(1) = o(1).

Proposition 4. If a function is differentiable at an input t, then it is continuous at t.

Challenge 10 Consider a mystery function h that satisfies the following: for each t, we have
h(t+ α)− h(t− α) = o(1). Can we conclude that h is continuous? If not, come up with a counter
example of a function that satisfies the given property, but is not continuous.

Nonexample 3: holes

Perhaps the simplest way to manufacture functions that are not continuous is by taking one
that is continuous, and puncturing a hole in it. Consider a function h defined by t 7→ 1 if t < 0 and
t 7→ 1 if t > 0. That is to say, h is almost a constant function, but the function is not defined at
t = 1, and so the value h(1) is undefined. Because we have introduced a hole, the function h is not
continuous. In particular function h is not continuous at t = 1.
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t

f1

1

1

x

t

f2

1

1
∗ x

t

f2

1

1
∗

Figure 2.6: A step function f1 and a step function f2 defined on a defective time axis.

Let us examine the step function once more. The leftmost graph in Figure 2.6 is a depiction of
the function f1, defined by t 7→ 1 for t > 1 and t 7→ −1 for t < 1. In particular, the function is
not defined on the point 1, and so the value f1(1) does not exist. As we discussed with the almost
constant function h previously, the function f1 is not continuous at the point t = 1.

However, there is a different type of hole we can introduce. Consider the function f2 depicted
in the middle of Figure 2.6. Just like the function f1, the function f2 is defined by the rules t 7→ 1
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for t > 1 and t 7→ −1 for t < 1. The difference here is that we pretend that the point t = 1 does
not exist by introducing a hole in the time axis. Thus the function f2 cannot be defined at t = 1
even if we wanted to. This was not the case with our previous step function f1.

If the function f2 continuous? Surprisingly, yes! Even though we have introduced a hole, the
function turns out to be continuous.

To check that a function is continuous, we have to make sure that the function is continuous at
each point it is defined. There are two cases to check: points greater than 1 and points less than 1.
The latter case is essentially the same as the previous case, so let us consider the case of t > 1. It
is visually simple to check that for points far away from t = 1, the function f2 is continuous. So let
us pick a point very close to t = 1, the point ∗ shown in the middle graph of Figure 2.6. But notice
that the units we use to measure time is completely arbitrary. So we may “zoom in” by introducing
a smaller unit of time so that the distance between t = 1 and ∗ is much more pronounced.20 Now
there is no problem in seeing that function f2 is also continuous at point ∗.

Well, isn’t the function f2 not continuous at t = 1? That is an invalid question, because time
t = 1 does not exist. The function f2 is continuous everywhere it can be defined on.

Completeness

At this point, we have broken calculus. We can have continuous functions describing the posi-
tions of objects teleporting at will. In such a setting, trying to sensibly ascribe velocity becomes
impossible.

In order to prevent this from happening, and to keep calculus intact, we must insist that the
number axis we are dealing with has no holes. To fix this problem, let us return back to the step
function f2. We observed the fact that no matter how “close” we got to t = 1, by a suitable choice
of units, we discovered that we were in fact “not close” to t = 1. Among the numbers t > 1, there
is no smallest number which is objectively “close” to the number 1. All of them can be made “not
close” to t = 1.

We have previously encountered the concept of a smallest number. In our proof of the power
rule, we used the fact that if we have a nonempty collection of natural numbers, then there must
be a smallest element. This is the well-ordering principle. This principle doesn’t hold here, because
there is no smallest number among t > 1.

Actually, it is even easier to break the well-ordering principle. Recall that the integers are
the collection of natural numbers and its negative counterparts. The integers are thus the numbers
−1,−2,−3, . . . , as well as the usual 0, 1, 2, 3, . . . from the natural numbers. The integers do not obey
the well-ordering principle because if we consider a collection of negative integers −1,−2,−3, . . . ,
this collection has no smallest element.

Nevertheless, this situation can be fixed. If we consider nonempty collections of integers whose
members are all above a certain lower limit, then there has to be a smallest integer. The well-
ordering principle of the natural numbers is itself a special case of this, for it states that anytime we
have a collection of integers that are not negative, and thus greater than −1, there will always be a
smallest element. We say that −1 is a lower bound of the natural numbers, or equivalently, that
the natural numbers is bounded from below by −1. In fact, any negative integer is a lower bound

20You might object that if we use a different unit of time, then the meaning of 1 has changed. If this bothers you,
replace the hole in our time axis by 0. This choice was not made to enhance legibility.
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of natural numbers. This allows us to apply the well-ordering principle to nonempty collections of
integers bounded from below.

We now import this fix. Going back to our step function f2 and our defective time axis, the
collection of numbers t > 1 was bounded from below (by numbers smaller than 1), but there was
no smallest number. We have already visually seen that there cannot be a smallest number t > 1
by zooming in our graph,21 so let us approach this from the other side with numbers t < 1. These
numbers form the lower bounds of the numbers t > 1. Is there a largest?

By a set, we mean a collection of objects. A number system is complete (in the sense of
not having holes) if each set of numbers (from the number system) that is bounded from below, a
greatest among all the lower bounds always exists. The greatest among all the lower bounds of the
set is called the greatest lower bound or the infimum of the set. As a shorthand, the infimum
of a set S is denoted by “inf S”.

We saw from function f2 that calculus requires a complete number system. The number system
we use, represented as an axis on a graph, is called the real numbers. The symbol for denoting
the set of real numbers is R. If T is the set of real numbers greater than 1, then inf T = 1. Our
problem with function f2, or rather, our defective number system, was that inf T was not a part of
the number system. Real numbers do not have this problem with holes because the number 1, and
indeed any value of length or value of time we can think of, can be depicted on a line (as we have
done so far), and are real numbers. In symbols, we write 1 ∈ R to mean that 1 is a member of (or
is an element of) the set of real numbers R. More generally, we write a ∈ S to mean that a is an
element of the set S and we write b /∈ S to mean that b is not an element of set S.

As emphasized many times before, the orientation of an axis is completely arbitrary. Just as a
direction of left to one is a direction of right to another, a negative number is a positive number
to another. Thus the set of real numbers R also has the equivalent property that: each set of real
numbers that is bounded from above has a smallest among all the upper bounds. The smallest
among upper bounds is called the least upper bound or the supremum of the set. If a set S
has a least upper bound, we denote the supremum using the symbol “supS”. A set is bounded if
it is both bounded from above and bounded from below.

If we take a positive α and then drop α → 0, the symbol zero denotes the infimum of the set
of positive real numbers. Similarly, if we take a negative α and then up α → 0, the symbol zero
denotes the supremum of the set of negative real numbers.

The natural numbers (denoted by the symbol N) and the integers (denoted by the symbol Z)
are not complete and are thus not sufficient for calculus. For example, we cannot describe lengths
or times with decimal points using integers. Surprisingly, fractions are not sufficient either. The
rational numbers (denoted by the symbol Q) are the numbers of the form a

b , where a is an integer
and b is a nonzero natural number. For example, 0.1 = 1

10 and so 0.1 is a rational number.

The classic counterexample is that the diagonal length of a square with side length 1 cannot be
expressed as a fraction. We will not pursue such theoretical issues further, as we wish to return
to calculus. We will simply be content that there is a complete number system that has no holes
called the real numbers in which we can do calculus in, and that we no longer have problems with
instantaneous teleportation and the like. In particular, motion cannot happen in the absence of
velocity. Or in calculus language, if f ′ = 0, then f is a constant function.

21An alternative way to see this is that if someone claims that ∗ is the smallest among the numbers t > 1, then
(∗ − 1)/2 is even smaller! In fact, it is halfway between 1 and ∗.
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Integration

The following optional Challenge is designed to get us into the mood for discussing displace-
ments. In particular, all the symbols mean something physical. Our discussion in the first section
of this chapter will be especially simple to understand and easy to remember if we stay grounded
in the physical world.

Challenge 11 Consider an object constrained to motion along a line. Let t be the time since
we started to keep track of the object and denote the object’s initial position by the constant xi

and the object’s initial velocity by the constant vi. The object’s position is denoted by x(t) and its
velocity is denoted by v(t). To simplify matters, assume the object is under constant acceleration
a (this constant could be positive, negative or zero).

(a) Our object’s position x may be calculated using the initial position xi, initial velocity vi,
current velocity v, and time t. Use dimensional analysis and apply a simple case (or common
sense) to find the formula for x. What does the formula say?

(b) Repeat part (a), but this time use acceleration a in place of velocity v.

(c) Our objects’s velocity v may be calculated from the initial position vi, acceleration a and time
t. Use dimensional analysis and apply some simple cases to find the formula for v.

(d) The squared velocity v2 can be calculated from the initial velocity vi, acceleration a, and
displacement x − xi. Use dimensional analysis and apply some simple cases to find the
formula for v2.1

(e) Use the derivative rules to show that your answer from part (b) gives the correct velocity and
acceleration for our object. Verify your formula from part (d) by taking the time derivative
of the formula from part (b), solving for time t, and then plugging the formula for t back into
the formula from part (b).

Intervals

We will use the notion of an interval as we discuss displacement from motion starting at one
time and ending at another. Here is some handy notation. For real numbers a and b with a < b:

(a) the symbol (a, b) denotes the set of real numbers x such that a < x < b,

1Hint: Although time t does not make an appearance in this formula, to check cases, nothing is stopping us from
for example, taking t = 1 to simplify values of x− xi and v.

33
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(b) the symbol [a, b] denotes the set of real numbers x such that a ≤ x ≤ b,

(c) the symbol [a, b) denotes the set of real numbers x such that a ≤ x < b,

(d) the symbol (a, b] denotes the set of real numbers x such that a < x ≤ b.

The first is called an open interval while the second is called a closed interval. The final two
are called half open intervals.

Sometimes, the symbols ∞ and −∞ are used in a similar context. For a real number a:

(a) the symbol (−∞, a) denotes the set of real numbers x such that x < a,

(b) the symbol (a,∞) denotes the set of real numbers x such that a < x,

(c) the symbol (−∞, a] denotes the set of real numbers x such that x ≤ a,

(d) the symbol [a,∞) denotes the set of real numbers x such that a ≤ x.

The first and second are considered open intervals while the third and fourth are considered half
open intervals. Each of the eight symbols are called intervals. To distinguish the intervals involving
the symbols∞ or −∞ from those that do not, intervals defined by real numbers only (the first four
kinds) are called finite intervals. There is one final type of interval (−∞,∞) and it is another
way to denote the set of real numbers R. This is also considered an open interval.

3.1 The Fundamental Theorems

Displacements

We studied velocity in the previous chapter, in particular, velocity functions and arithmetic
with velocity functions. In this chapter, we will examine displacements and displacement functions.
For simplicity, we will only consider objects in motion along a line moving back and forth.

Suppose we have some velocity function f at hand. As we saw in the previous section, there
are headaches with functions that are not continuous, so we will always assume f is continuous.
Furthermore, it is tricky to talk about displacements with unbounded velocity. We will assume
our velocity function f is bounded, at the very least within the time interval we are considering (a
function is bounded if the set of its outputs are bounded from above and below by real numbers).
In order to calculate the displacement of an object between an initial time ti and final time tf , we
could follow these basic steps.

First, we divide the time interval into smaller chunks. Second, for each smaller time interval
we pick some representative value of f . The velocity function f is assumed to be bounded, so we
may take the supremum or infimum of the values of f in that time interval. The third and final
step: for each time interval [ti, tj ], we calculate an estimate of displacement during that time with
(tj − ti) × inf f or (tj − ti) × sup f , depending on our choice made in step two, then add all the
estimates up.

These steps are simply a more detailed version of what we could imagine a car uses to determine
distance travelled using information from its speedometer: (i) given some time interval, (ii) pick a
representative speed during that time interval, and (iii) multiply the representative speed with the
time interval and accumulate to the previous estimate of distance travelled.2

2This is only an analogy, and if we stretch it a little bit it breaks down. We are studying displacements of
objects that motion back and forth along a line. When calculating displacement, we can cancel out our accumulated
displacement by having negative velocity, in other words, reversing our car. Unfortunately we cannot reduce an
odometer reading by driving our car in reverse.
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Alternatively, we could view these steps as describing properties of displacement.

(a) We ‘break down” a time interval into smaller chunks because our displacement during the
day from 9AM (t0) to 9PM (t2) is the same as accumulating our displacement from 9AM (t0)
to noon (t1) with our displacement from noon (t1) to 9PM (t2).

(b) Our estimate for displacement can change depending on our representative velocity chosen,
because for an object traveling in one direction, a faster velocity leads to greater displacement.

(c) We estimate our displacement during a time interval as if we are moving at a constant velocity
at that time interval with the representative velocity. With this assumption, our displacement
is given by the product of our representative velocity with the length of the time interval.

It will be convenient to introduce a notation due to Gottfried Leibniz and Joseph Fourier. If f
is a velocity function, then the displacement from time ♠ to time ♡ is denoted by the symbol∫ ♡

♠
f( ) d

where the two boxes may be replaced by your choice of exactly one symbol, with the exception of

the symbols used to represent the time endpoints—in this case ♠ and ♡. For example,
∫ ♡
♠ f(x) dx

and
∫ ♡
♠ f(t) dt will both be equally acceptable. The reason we need the box is that the velocity

function f may have several symbols and we will need to distinguish the constants from the variables.
For example, suppose we have a velocity function f : t 7→ at2 + bt+ c, for some constants a, b, and
c. Then we will denote the displacement from time ti to time tf by

∫ tf
ti
(at2 + bt+ c) dt. As another

example, suppose we have a different velocity function g : x 7→ αx + β, for some constants α and

β. Then we will denote the displacement from time a to time b by
∫ b

a
(αx+ β) dx.

We recast our properties using this new notation for some continuous and bounded function f .

(P1) Displacement from time t0 to time t2 is the same as the displacement from time t0 to time t1
added to the displacement from time t1 to t2.∫ t2

t0

f(t) dt =

∫ t1

t0

f(t) dt+

∫ t2

t1

f(t) dt

(P2) If w is some continuous and bounded function with v(t) ≤ w(t) for each t ∈ (ti, tf ), then∫ tf

ti

v(t) dt ≤
∫ tf

ti

w(t) dt.

Consistently faster objects exhibit greater displacement.

(P3) If v is a constant function v : t 7→ c for some constant c, over a time interval ti to tf , then∫ tf

ti

v(t) dt := c(tf − ti).

Objects traveling at a constant velocity have a simple formula for calculating displacement.

In property 1, that is (P1), there is no restriction that time t1 be between t0 and t2. To see how this
works, imagine watching a marathon from start to finish. If we rewind the marathon footage, we
will see marathoners running −42.195 km. The marathoners will need to run 42.195 km to return
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to the finish line. So there is no problem calculating the displacement of an object from 9PM to
9AM of the same day, as long as we put on a minus sign at the end. In symbols, our convention is∫ tf

ti

f(t) dt = −
∫ ti

tf

f(t) dt. (3.1)

While we are on the subject of technicalities, recall that even if we are standing perfectly still,
because the earth is moving, so are we. Thus we get a boost exceeding 1600 km/hr (exact figure
depends on our location), even if we are staying perfectly still. To account for such differences,
we can take our original velocity function f and subtract some predetermined constant v, where
v could be 1600 km/hr. In such a case, the displacement between time ti and time tf could

be denoted by
∫ tf
ti

(
f(t) − v

)
dt,3 where we have subtracted the velocity due to earth’s motion.

Alternatively, we could continue to measure displacements as before, and only when we need to
conform to other conventions, make up for the difference. This is done using property (P3) to

calculate
∫ tf
ti

f(t) dt− v(tf − ti). This establishes the equality:∫ tf

ti

(
f(t)− v

)
dt =

∫ tf

ti

f(t) dt− v(tf − ti). (3.2)

First fundamental theorem of calculus

In our study of differentiation in Chapter 2, we were interested in velocity functions, rather than
velocity itself. Likewise, we will turn our attention to displacement functions. From some initial
time ti, we define a displacement function F associated to a velocity function f as the function

F : t 7→
∫ t

ti

f(x) dx.

The first thing we should note is that the rate of change of a displacement should be its velocity.
That is, we expect

F ′ = f. (3.3)

An equivalent way to put this is:
d

dt

∫ t

ti

f(x) dx = f(t).

Let us verify that this is indeed the case. We take a bounded function f that is continuous at
t. Define the displacement function F : t 7→

∫ t

ti
f(x) dx, measured from some initial time ti. What

we want to show is that
F (t+ α) = F (t) + f(t)α+ |α|o(1).

To achieve this, it is sufficient to show that

|F (t+ α)− F (t)− f(t)α| ≤ |α|o(1).

Analogous to the steps for estimating displacements, we first consider a time slice of nonzero
length α:

F (t+ α)− F (t).

3Here, v is being used as a constant function. Thus
∫ tf
ti

f(t)− v(t) dt would mean the same thing.
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By property (P1), we have

F (t+ α)− F (t) =

∫ t+α

ti

f(x) dx−
∫ t

ti

f(x) dx =

∫ t+α

t

f(x) dx.

We will define f(t) to be our base level for velocity (just as we established the speed of the earth
to be the base level for velocity by subtracting the speed of the earth in Equation 3.2). To match
units, we multiply f(t) by α and subtract to get

F (t+ α)− F (t)− f(t)α =

∫ t+α

t

f(x) dx− f(t)α.

Using Equation 3.2, and applying absolute values everywhere to suppress questions about the sign
of α, we have

|F (t+ α)− F (t)− f(t)α| =
∣∣∣∣∫ t+α

t

f(x)− f(t) dx

∣∣∣∣ .
Next, we move on to the second step of the estimation of displacements: we will pick a representative
velocity for the time interval from time t to t+ α. In particular, we know f is bounded,4 so there
is a least upper bound for the values of the function f during the time interval [t, t + α]. In fact,
since f(t) is a constant, there will be a least upper bound for the values of the function |f − f(t)|
during the time interval [t, t + α], which we will denote by supx∈[t,t+α] |f(x) − f(t)|. We take this
as the representative and use property (P2) to obtain the following.

|F (t+ α)− F (t)− f(t)α| =
∣∣∣∣∫ t+α

t

f(x)− f(t) dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ t+α

t

sup
x∈[t,t+α]

|f(x)− f(t)| dx

∣∣∣∣∣
Finally, we move on to the final step of the estimation of displacements. By property (P3),

|F (t+ α)− F (t)− f(t)α| ≤

∣∣∣∣∣
∫ t+α

t

sup
x∈[t,t+α]

|f(x)− f(t)| dx

∣∣∣∣∣ = |α| sup
x∈[t,t+α]

|f(x)− f(t)|.

Now let us imagine reducing the time interval by taking α → 0. Then each point x in the time
interval [t, t + α] drops to t. Hence as α → 0, x drops to t, and by continuity of f at time t:
f(x)− f(t) = oα(1). Thus supx∈[t,t+α] |f(x)− f(t)| = oα(1). Therefore,

F (t+ α)− F (t)− f(t)α = |α|oα(1)

and we conclude that F is differentiable at t with F ′(t) = f(t).5

Theorem 5 (First Fundamental Theorem of Calculus). Suppose f is a bounded function defined
on a closed interval [ti, tf ] that is continuous on t ∈ [ti, tf ] and we take

F : t 7→
∫ t

ti

f(x) dx.

Then F is differentiable at t with F ′(t) = f(t).

4Recall that if something is bounded, it has both an upper bound and a lower bound
5Notice that it was necessary to take absolute values, for if F (t+ ϵ)−F (t)− f(t)ϵ ≤ |ϵ|o(1), we cannot conclude

that F (t+ ϵ)− F (t)− f(t)ϵ = |ϵ|o(1). Negative functions are smaller than o(1), but are not necessarily o(1). As we
discussed in Section 2.2, if |F (t+ ϵ)− F (t)− f(t)ϵ| ≤ |ϵ|o(1), then we know that F (t+ ϵ)− F (t)− f(t)ϵ = |ϵ|o(1)
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This important result shows that we can generalize our intuitive idea that the rate of change
of a displacement is its velocity, and apply them to functions beyond velocities and displacements.
Just like we generalized the concept of a velocity into the notion of a derivative, we now generalize
the notion of a displacement. The objects with the symbol

∫
that obey properties (P1), (P2), (P3),

and Equation 3.2 are called integrals. The calculation of integrals is called integration.

There are several types of integrals. Suppose we have an integral I :=
∫ b

a
f(x) dx. If b is a

constant, then I is a real number (generalizing “displacement”). If b is a variable, then the integral

I is a function I : b 7→
∫ b

a
f(x) dx (generalizing a “displacement function”). The latter is bad style,

for we expect b to be a symbol for a constant, not a variable. It would be better in this case, as an
example, to define I : t 7→

∫ t

a
f(x) dx or I : x 7→

∫ x

a
f(t) dt.

There is yet another type of integral. Compare the expression
(

x2

2

)′
= x with the expression

F ′ = f from the Fundamental Theorem of Calculus (Equation 3.3). We see that F := x2

2 has an

interpretation of a “displacement function” for the “velocity function” f : x 7→ x. However, x2

2

is not unique in this regard. For example (x
2

2 + 1)′ = x, (x
2

2 + 2)′ = x, and so on. This makes
sense, for there are infinitely many conventions to measure displacements: one convention where
the measurement starts from the King’s palace, one convention where the measurement starts from
the library, etc. It is natural to classify all such functions into one group.

The antiderivative or the indefinite integral of a function f , written
∫
f( ) d is the set

of functions whose derivative is f .6 For example,
∫
x dx = x2

2 + c, where c denotes the arbitrary
constant representing the degree of freedom in choosing where we can set the origin for measuring

“displacements”. In contrast to the indefinite integral, integrals of the form
∫ ♡
♠ f( ) d are called

definite integrals. For example,
∫ b

a
x dx is a definite integral.

Second fundamental theorem of calculus

Now that we have discussed a fair bit about displacement functions, we now turn to the natural
question: how to do we calculate displacements? For example, what is the real number correspond-

ing to the definite integral
∫ 1

0
x dx?

To make this concrete, let us imagine that we are walking up a very long stairwell and we wish
to measure how much height we have traversed. One way would be count the number of steps per
second say, and add them all up.

An easier way would be to use an altimeter, any one that works, and then (i) measure our
altitude at the beginning of the journey and (ii) measure our altitude at the end of our climb, then
(iii) calculate: final altitude − beginning altitude.

Notice how the altitude the altimeter is calibrated to makes no difference to the result: whether
the altitude begins at sea level, or the peak of Mount Everest at a certain year, they are both ok.
However, it is crucial that we stick to the same altimeter. If we swap out one for another in the
middle, then this method is no good.

Let us use this thinking to calculate the definite integral
∫ 1

0
x dx. We know from our discussion

before that
∫
x dx = x2

2 + c. Pick an “altimeter”—we’ll pick x2

2 + 3.141592. At the start time

6This is analogous to the expression o(1), since oα(1) is actually a collection of functions that drop to zero as
α → 0. Even though antiderivatives and o(1) are sets of functions, we treat them like functions.
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of ti = 0, we have an altimeter reading of 02

2 + 3.14192. At the end time of tf = 1, we have an

altimeter reading of 12

2 + 3.141592. Subtract the former reading from the latter and we see that∫ 1

0
x dx = 1

2 .

Let us see how our method could fail. Well, if we are allowed to move about with sudden jumps,
or move with zero velocity (Examples 2 and 3 in Section 2.5), then our method will not work. So
we will only be able to apply this method to continuous functions, and we will have to disallow
instantaneous teleportations (motion without velocity). By working with real numbers (Section
2.5), we do not have to worry about the latter, for a function with zero derivative (no velocity) will
be a constant function (no motion).

Now let us verify that our method works. Consider a continuous function f , and let F be an
antiderivative of f . The “manual way” of calculating “altitude” can be expressed by the symbol∫ x

a
f(t) dt. By the Fundamental Theorem of Calculus,

d

dx

∫ x

a

f(t) dt =
d

dx
F (x).

The subtraction rule for derivatives tells us that g′ = h′ is equivalent to (g − h)′ = 0, and so

d

dx

(∫ x

a

f(t) dt− F (x)

)
= 0.

Since the derivative is zero and instantaneous teleportations are not permitted, the function inside
the brackets must be a constant function:∫ x

a

f(x) dx− F (x) = c.

To find the value of the constant, we will evaluate the function at the starting time a and use the
third property of an integral (P3) to obtain the following.

c =

∫ a

a

f(x) dx− F (a) = 0− F (a)

Theorem 6 (Second Fundamental Theorem of Calculus). If f is bounded and continuous on a
closed interval [ti, tf ] with antiderivative F , then∫ tf

ti

f(x) dx = F (tf )− F (ti).

Sometimes we will find it convenient to use the shorthand

F (x)
∣∣∣tf
x=ti

:= F (tf )− F (ti).

For example, ∫ 1

0

x dx =
x2

2

∣∣∣∣1
x=0

:=
12

2
− 02

2
=

1

2
.

Here is a comment on the theorem. The right hand side is not a definition of the definite
integral on the left. The theorem simply says that if an antiderivative is available, then there is a
shortcut to computing the definite integral. A particular altimeter from one manufacturer is not
the definition of the elevation of a location, but it we have one available, why not use it?
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3.2 Arithmetic of Displacements

We now port some of the essential differentiation rules we obtained in Chapter 2 for use with
integrals.

Linearity of Integrals

Recall that (f+g)′ = f ′+g′ and (cf)′ = cf ′ for real c. Suppose f and g are continuous and thus
have antiderivatives F and G, respectively. Ignoring the arbitrary constants (which are subsumed),
we have ∫

(f + g) = (F +G) =

∫
f +

∫
g

∫
(cf) = cF = c

∫
f.

Similarly, ∫ b

a

(f + g)(x) dx = (F +G)(b)− (F +G)(a) = [F (b)− F (a)] + [G(b)−G(a)]

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

and ∫ b

a

(cf)(x) dx = (cF )(b)− (cF )(a) = c[F (b)− F (a)] = c

∫ b

a

f(x) dx.

Integration by parts

Is there an analogue of the product rule (fg)′ = (f ′g) + (fg′) for integration? Taking the
antiderivative of both sides gives ∫

(fg)′ =

∫
(f ′g) +

∫
(fg′).

For the antiderivative of (fg)′, we pick fg (with an arbitrary constant of zero), and we have
integration by parts. Repeating the derivation for the definite integral gives an analogous result.

Theorem 7 (Integration by Parts). If f and g are differentiable and f ′ and g′ are continuous, then∫
(fg′) = (fg)(x)−

∫
f ′g

∫ b

a

f(x)g′(x) dx = (fg)(b)− (fg)(a)−
∫ b

a

f ′(x)g(x) dx.

Substitution rule

We seek an analogue of the chain rule for integration. Recall the chain rule states that

(f ◦ g)′(x) = (f ′ ◦ g)(x) · g′(x).

The right term is fairly complex, but the left term admits a simple application of the Second
Fundamental Theorem of Calculus:∫ b

a

(f ◦ g)′(x) dx = (f ◦ g)(b)− (f ◦ g)(a).
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We have an opportunity to apply the Second Fundamental Theorem of Calculus once more:

(f ◦ g)(b)− (f ◦ g)(a) =
∫ g(b)

g(a)

f ′(u) du.

Therefore, the following holds (the second equality is an application of the chain rule).∫ g(b)

g(a)

f ′(u) du =

∫ b

a

(f ◦ g)′(x) dx =

∫ b

a

(f ′ ◦ g)(x) · g′(x) dx

This is the substitution rule. We will make a minor cosmetic change, replacing each symbol “f ′”
in the above with the symbol “f”.

Theorem 8 (Substitution Rule). If f is continuous, g is differentiable, and g′ is continuous, then∫ g(b)

g(a)

f(u) du =

∫ b

a

(f ◦ g)(x) · g′(x) dx. (3.4)

3.3 Area Under a Curve

t

v

c

tfti

t

v

c

tfti

t

v

titf

Figure 3.1: Velocities of objects from time ti to tf . The displacement is the area under the curve.

Consider the three diagrams in Figure 3.1. Each curve may be interpreted as telling us the
velocity of an object from the time ti to time tf . The first is the simplest, our object is moving
at a constant velocity. Using a definite integral and the fundamental theorem of calculus, we know
that our object is subject to the displacements d1, whose value is

d1 =

∫ tf

ti

c dt = ct
∣∣∣tf
ti

= c(tf − ti).

The displacement takes a simple form, as it should: it says that the displacement d1 is the velocity
times the duration of travel. But we can interpret this as the area of a square whose height is c
and base length is tf − ti. Such a square is literally drawn in our diagram: it is the shape that is
enclosed inside the curve, the x-axis, and the equations t = ti and t = tf .

We thus have another interpretation of integration: as an area under a curve. Our method
of calculating the displacement of an object by accumulating its velocity is the same as that for
calculating area under a curve!

Let us try this out for the function graphed in the second diagram in Figure 3.1. The area
under the curve is a right triangle: a triangle where one of the angle measures 90°. A triangle
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with height h and base length l occupies precisely half the area of a square with height h and base
length l. Therefore, a triangle with height h and base length l has area hl/2. Applying this to our
curve, we see that the displacement d2 of our object is: c(tf − ti)/2. Let us repeat this calculation
with integration. The formula for a line is given by t 7→ wt+ b where the constant w is called the
slope, or weight, of the line and the constant b is called the bias. The slope measures the rate of
change of the line. In this case, the rate of change is c−0

tf−ti
since it steadily increased from 0 to c

over the time ti to tf . To find the bias, pick any point on the line. Any point suffices, but the point
(ti, 0) is a particularly simple one. We then apply the x-coordinate of the point to our formula and
correct for the difference with the y-coordinate. The formula is c

tf−ti
t+ b, so plugging in the input

ti into the variable t gives cti
tf−ti

+ b which must equal the y-coordinate: 0. Therefore, the bias b is

given by b := − cti
tf−ti

and our formula for the line is

c

tf − ti
t− cti

tf − ti
.

The definite integral for the function above from ti to tf is

d2 =

∫ tf

ti

(
c

tf − ti
t− cti

tf − ti

)
dt =

c

tf − ti

∫ tf

ti

t dt− cti
tf − ti

∫ tf

ti

1 dt

=
ct2

2(tf − ti)

∣∣∣∣tf
ti

− ctit

tf − ti

∣∣∣∣tf
ti

=
c(t2f − t2i )

2(tf − ti)
− cti(tf − ti)

(tf − ti)
=

c(t2f − 2tf ti + t2i )

2(tf − ti)
=

c(tf − ti)
2

2(tf − ti)
.

Since tf−ti is nonzero, we may cancel out the common factors in the fraction to get d2 = c(tf−ti)/2.
A whole lot more work to get the obvious answer!

a

b
c

θ

ϕ

A

a

b
c

θ
θ

ϕ

ϕ

B

C

Figure 3.2: A single line is sufficient to prove the Pythagorean theorem.

The horrendous calculation for the area of a triangle shows us the advantage of having multiple
perspectives. A difficult problem in one perspective might turn out to be far simpler in another.
So how about we try out another perspective on triangles?

Have a look at the right triangle depicted on the left diagram of Figure 3.2. In either of our
calculations, we never had to use the length c of the hypotenuse (the longest side of a right
triangle). How about we try to calculate the area of a right triangle without using the lengths a
and b? The other pieces of information we have available are the length of the hypotenuse c and
two angles θ and ϕ (labeled in the left diagram of Figure 3.2). Since the angles of a triangle add
up to 180°, we have θ + ϕ = 90°.

An angle is the ratio of two lengths and is therefore dimensionless (see footnote: the angle Θ is
the length of the red arc divided by the circumference of the blue circle; this ratio is independent of
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the radius involved).7 The only dimensionful quantity (quantity with a dimension) is the length
c. By dimensional analysis, the area of the triangle A will then be given by

A = f(θ, ϕ)c2

where f is some dimensionless function of our angles θ and ϕ. Draw a line from the right angle to
the hypotenuse such that two new right angles are formed (see the diagram on the right in Figure
3.2). There are now three right triangles in one diagram. Denote the area of the larger of the new
triangle by B and the area of the smaller of the new triangle by C. All three right triangles have
the angles θ and ϕ. The area B is given by f(θ, ϕ)a2 and the area C is given by f(θ, ϕ)b2. Since
B+C = A, we have f(θ, ϕ)a2+f(θ, ϕ)b2 = f(θ, ϕ)c2. Since f(θ, ϕ) must be nonzero, we can divide
both sides by f(θ, ϕ) to obtain the Pythagorean theorem:

a2 + b2 = c2.

Circles and ellipses

The function f(θ, ϕ) and our attempt to calculate a triangle’s area with it is an example of a
MacGuffin. True to a MacGuffin’s purpose we immediately return to the plot: we want to use
integrals to calculate areas under curves. The curves corresponding to constant velocity (square)
and constant acceleration (triangle) were simple. How about an arc as shown in the third diagram
of Figure 3.1? The arc corresponds to the top half of an ellipse. Before discussing ellipses, it would
be better to talk about circles, which are simpler. Notice that an ellipse former needs two real
numbers (width and height) to describe, while a circle is described by a single number (radius).

x

y
r

−r

r−r

(α, β)

r

x

y
r

r−r

Figure 3.3: A circle of radius r at the origin is given by the equation x2 + y2 = r2 (left) and the
top semicircle is given by the equation y =

√
r2 − x2 (right).

To apply integration, we need a function that describes a curve. What is the equation of a circle
of radius r centered at the origin? Take any point in a circle that is not on an axis, and label the
x-coordinate by α and the y-coordinate by β (see the diagram on the left in Figure 3.3). We may
create a right triangle whose base is on the x-axis. By the Pythagorean theorem, α2 + β2 = r2.
Thus points on the circle that are not located in the axis are described by the equation x2+y2 = r2.
But the points located in the axis also satisfy the equation x2 + y2 = r2 because one of the term in

7

Θ
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the left side is r2 and the other is zero. Therefore, the equation of a circle of radius r centered at
the origin is given by x2 + y2 = r2. To find the equation of the top half of a circle, called the top
semicircle, which we may interpret as describing the velocity of an object from time −r to time
r, we subtract x2 from both sides of the equation and use the fact that y > 0 on the top half to
take the square root. This gives the equation y =

√
r2 − x2.

Suppose we knew nothing about area formulas for circles and ellipses. By dimensional consider-
ations, we guess that the area of a circle of radius r should be cr2 for some dimensionless constant
c. What is the constant c? Normally we would plug in the value r = 1 to find the value of c, but
we are starting from scratch so there is no other information to help us. We have no choice but to
define the constant. A unit circle is a circle of radius 1. The constant π is defined to be the value
of the area of a unit circle.

A unit circle may be depicted on a plane. If we position the x-axis and the y-axis to be the
origin at the center of the unit circle as shown in the left of Figure 3.4, the graph of the unit circle
is given by the equation: x2 + y2 = 1. In particular, the equation for the top semicircle, shown on
the right of Figure 3.4 is given by y =

√
1− x2. To see this, subtract x2 from both sides of the

equation to get y2 = 1− x2 then take square roots on both sides (which is ok to do since y > 0 on
this side of the circle).

x

y

1

−1

1−1
x

y

1

1−1

Figure 3.4: The graphs of equation x2 + y2 = 1 (left) and equation y =
√
1− x2 (right).

If we think of the equation y =
√
1− x2 as describing the velocity y of a car at time x from time

−1 to time 1, Then the integral of the function
√
1− x2 from −1 to 1 is the accumulated velocity

during this time. Geometrically, this corresponds to the area enclosed between the semicircle and
the x-axis. Since the area of a circle is twice that of the area of a semicircle of the same radius,

π := 2

∫ 1

−1

√
1− x2 dx.

Now that we have defined π such that it is (the value of) the area of the unit circle, let us
use this information to check our guess that the area of a circle with radius r is πr2. Since we
already know the area of a unit circle (defined to be π), the most straightforward path will be to
reduce the circle of radius r into a unit circle. The function f describing the top semicircle of radius
r is given by

√
r2 − x2. We want the accumulated “velocity” from time −r to r. The integral

we wish to calculate is thus
∫ r

−r

√
r2 − x2 dx, where radius r is a positive constant. The function

f : x 7→
√
r2 − x2 can be made to resemble the function describing the top semicircle of a unit

circle by pulling out the r term:√
r2 − x2 =

√
r2(1− x2/r2) = r

√
1− (x/r)2.
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To fully reduce the term
√
1− (x/r)2 into

√
1− x2, we will make the substitution g : x 7→ x/r.

This calls for the substitution rule with u := g(x)∫ b

a

(f ◦ g)(x) · g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Now g′(x) = 1/r, which is a problem because we have a factor of r instead in r
√
1− (x/r)2. We

remedy this by multiplying and dividing by r:

f(x) =
√

r2 − x2 = r
√
1− (x/r)2 = r2(1/r)

√
1− (x/r)2.

All the preparation is done and we just have to apply the substitution rule. The area A(r) of a
circle of radius r is given by

A(r) = 2

∫ r

−r

√
r2 − x2 dx = 2r2

∫ r

−r

√
1− (x/r)2 · 1

r
dx (3.5)

=

(
2

∫ g(r)

g(−r)

√
1− g(x)2 · g′(x) dx

)
r2 =

(
2

∫ 1

−1

√
1− u2 du

)
r2 = πr2. (3.6)

The integral 2
∫ 1

−1

√
1− u2 du is defined to be π, and so A(r) = πr2, just as we guessed.

x

y

a

−a

b−b
x

y

a

b−b

Figure 3.5: The graphs of equation x2

b2 + y2

a2 = 1 (left) and equation y =
√
a2 − (ax/b)2 (right).

We now turn to the ellipse. What is an equation that describes an ellipse of height 2a and width
2b centered at the origin? Since the answer is not obvious at all, let us try to reduce this problem
into a simpler one. If we measure the x axis in units of b so that b = 1, then our ellipse will have
width of 2. Similarly, if we measure the y axis in units of a so that a = 1, then our ellipse will
have a height of 2. In other words, with our new choice of units, our ellipse becomes a unit circle!
The unit circle’s equation is given by x2 + y2 = 1. We see that with the substitution x 7→ x/b (this
makes b = 1) and y 7→ y/a (this makes a = 1) we obtain the equation of a unit circle. Therefore,

the equation of an ellipse is x2

b2 + y2

a2 = 1. To get the top half of an ellipse, which allows us to
interpret the area under a curve as a displacement (and thus an integral), we subtract both sides

of the equation of an ellipse by x2

b2 and then multiply both sides by a2 to isolate the y2 term. Since
y > 0 on the top half of an ellipse, we can take a square root of both sides to get the equation
y =

√
a2 − (ax/b)2.

Let us use the interpretation of area under the curve as an integral to find a formula for the area
of an ellipse. We will reduce our problem into one we have already solved: the formula for the area of
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a circle. The equation for the top half of an ellipse y =
√

a2 − (ax/b)2 can be transformed into the

equation for the top semicircle of radius a given by
√
a2 − x2 using the substitution g : x 7→ ax/b.

Since g′(x) = a/b, the substitution rule with u := g(x) gives the area A(a, b) of an ellipse as

A(a, b) = 2

∫ b

−b

√
a2 − (ax/b)2 dx = 2

∫ b

−b

b

a
· a
b

√
a2 − (ax/b)2 dx =

2b

a

∫ b

−b

√
a2 − (ax/b)2 · a

b
dx

=
b

a

(
2

∫ g(b)

g(−b)

√
a2 − g(x)2 · g′(x) dx

)
=

b

a

(
2

∫ a

−a

√
a2 − u2 du

)
=

b

a

(
πa2

)
= πab

where we have used the fact that 2
∫ a

−a

√
a2 − u2 du is the area of a circle of radius a (Equation

3.5). The answer A(a, b) = πab confirms our guess from dimensional analysis at the beginning of
Chapter 2.

Observe that in both of our calculations for the area of a circle and an ellipse, the only substi-
tution we needed was a rescaling of the variable x. In the former case it was g : x 7→ x/r, while in
the latter case it was g : x 7→ ax/b. Since r, a, and b are all positive constants, these substitutions
are simply a change of units. For example, in the former case our substitution simply rescales our x
axis such that the number r becomes our unit of measurement. It has the effect of setting r = 1 (if
a meter is our unit of measurement, then the length of a meter becomes 1) and turning our circle
into a unit circle. The case of the ellipse is similar where we are setting our unit of measurement
such that a

b = 1, in other words: a = b, which turns our ellipse into a circle!

This demonstrates the special case of the substitution rule: if we measure the x-axis in units of

a nonzero constant c so that c = 1, then
∫ c

−c
f(x) dx = c

∫ 1

−1
f(x) dx.

Solids of revolution

We were able to calculate areas by interpreting area under a curve as the displacement of an
object, moving with velocity described by the curve. Can we measure volume in a similar way?

y

x

Figure 3.6: Rotating the area underneath the constant function defined on a finite interval sweeps
out a cylinder.

Suppose we have a function f defined on an interval [a, b] with f ≥ 0 on each point it is defined
on (we will call such functions positive functions).8 If we rotate the area enclosed by the function
f , the x-axis, and the lines x = a and x = b, then we sweep out a geometrical solid. In Figure
3.6 we see that rotating an area of a square sweeps out a cylinder. Rotating an angled line (with
positive function values only) sweeps out a cone, rotating a semicircle sweeps out a sphere. Much
like we can accumulate velocity to obtain displacement, we should be able to accumulate area to

8Thus a zero function is also a “positive” function. It rolls off the tongue better than “nonnegative functions”.
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obtain volume. This will enable us to use the machinery of integrals to calculate the formulas of
volumes for a large class of geometrical objects. Let us guess the formula of the volume of a solid
obtained by sweeping a positive function defined in a finite interval [a, b].

Recall that a derivative of g has dimension of g divided by the dimension of its input. Since
integration is an inverse operation of differentiation, due to the fundamental theorem of calculus
(
∫ x

ti
g(t) dt)′ = g(x), an integral of g has dimension of g multiplied by the dimension of its input. For

example, for velocity g with input time t, the integral of g (displacement) has dimension velocity
(Length/Time) multiplied by Time, which is Length.

Under the interpretation of an integral as an area, a function f and its input x both have the

dimension of Length, allowing
∫ b

a
f(x) dx to represent an area with dimension Length2. We see that

the expression
∫ b

a
[f(x)]2 dx is the simplest one that has the desired dimension Length3 of a volume.

The only thing missing is our ignorance about dimensionless constants. We therefore guess that

the volume V is given by
∫ b

a
c[f(x)]2 dx for some dimensionless constant c.9

To find the constant c, we consider the simple case of a cylinder. The cylinder’s volume can
be found by taking the product of the base circle of radius r (whose area is πr2) and its height h.
Therefore, a cylinder of height h and radius r has volume πr2h. Let us set up our integral. The
constant function f : x 7→ r defined on the interval [0, h] will give us a rectangle with the desired
shape. Our guess will thus give

πr2h =

∫ h

0

c[f(x)]2 dx =

∫ h

0

c · r2 dx = cr2
∫ h

0

1 dx = cr2x
∣∣∣x=h

x=0
= cr2h

and we see that the dimensionless constant is π.

The volume of a solid of revolution obtained by rotating a positive function f defined on an
interval [a, b] around the x-axis is given by∫ b

a

π [f(x)]
2
dx.

Challenge 12

(a) Let r and h be positive real numbers and let f : x 7→ rx/h be defined on the interval [0, h].
Use the method of solid of revolution on the function f to verify that the volume of a cone of

height h and circular base of radius r is given by the formula πr2h
3 .

(b) Apply the solid of revolution to the equation for a semi circle of radius r to verify that a
sphere of radius r has volume 4

3πr
3.

(c) An ellipsoid is a stretched out sphere. Consider an ellipsoid with depth 2a, width 2b, and
height 2c. Use the fact that a sphere of radius r has volume 4

3πr
3 to guess the volume of an

ellipsoid. Use the solid revolution on the top half of an ellipse and a change of units (or the
substitution rule) to verify your guess. The change of units is necessary because applying the
solid of revolution on an ellipse will calculate the volume of an ellipsoid with depth 2a, width
2b, and height of either 2a or 2b, but not 2c.

9Technically speaking the expression c
(∫ b

a f(x) dx
)
f also has the dimension of a volume, but it cannot be a

volume because it is not a number but a function.
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3.4 Exponentiation Revisited

The logarithm function

Question: what is an antiderivative of the function 1/x? Easy: assign the dimension of Length
to variable x so that 1/x has dimension Length−1. Its antiderivative must then have dimension
Length × Length−1, in other words, it must be dimensionless. So we guess that the antiderivative
of 1/x is an arbitrary constant c.

This is completely wrong! By the constant rule, we know that c′ = 0, which is definitely not
1/x. Now, we could ignore this problem and pretend that everything is ok. However, 1/x is such a
simple yet important function that describes division by a variable. We will have to resolve this.

As we saw, if 1/x has an antiderivative, it must be dimensionless, so we have no clue to help us
our. Just as we calculated areas of circles by defining the (value of the) area of a unit circle to be
π, our solution will be to define a function that differentiates to 1/x.

Definition 9. For each x ∈ (0,∞), the (natural) logarithm function is defined as

log : x 7→
∫ x

1

1

u
du.

The Fundamental Theorem of Calculus gives log′(x) = 1/x for each x ∈ (0,∞).10

By construction, the logarithm function is monotone increasing: if 0 < a < b then log(a) <

log(b). Property (P3) of integrals gives log 1 =
∫ 1

1
1/u du = 0. The derivative of the logarithm

function never vanishes (that is, the derivative is never zero), and since differentiability implies
continuity, we conclude that the logarithm function is continuous.

The following properties of the logarithm function are the guarantors of the function’s utility.

Proposition 10. Let x and y be positive real numbers; then

(a) log(xy) = log x+ log y,

(b) log x
y = log x− log y,

(c) if p is a real number, then log xp = p log x.

Proof. (a) We have two variables x and y. To make things more manageable, we first fix y and
consider a function of x only. We will ignore log y and move log x to the left side by defining
the following function: for positive y, let g : x 7→ log(xy)− log x. We apply the differentiation
rules, treating y as a constant to get

g′(x) =
1

xy

d

dx
(xy)− 1

x
=

1

xy
· y − 1

x
= 0.

The symbol d
dx means, take the derivative with respect to x. This was necessary because

the expression (xy)′ in a vacuum might be ambiguous, whereas d
dx (xy) and d

dy (xy) are both

unambiguous.11

10As an easy exercise, you should verify that x 7→ 1/x is continuous on the interval (0,∞) and bounded in the
interval from 1 to x. There are three possibilities for the latter: (1, 1) if x = 1, (x, 1) if 0 < x < 1, and (1, x) if x > 1.

11Contrast this with the unambiguous expression (cxk)′. Our convention is that c is a constant.
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Our calculation shows that g is a function of x, whose rate of change with respect to x is zero.
Thus g is actually a constant. To calculate g, observe that g(1) = log y − log 1 = log y − 0 =
log y. This gives log(xy)− log x = g(y) = log y, as desired.

(b) We multiply by 1 and use property (a) to get

log x = log

(
x

y
· y
)

= log
x

y
+ log y.

Rearranging, we have log x− log y = log x
y .

(c) We will return to this later.

We note one further property of the real numbers. We formalize the idea that a ruler, no matter
how small, may be used to measure any length in finitely many steps, no matter how long. The
proof will be reminiscent of our previous encounters with the well-ordering principle.

Theorem 11 (Archimedean property of R). If x is a positive real number and y is a real number,
then there is some natural number n such that nx > y.

Proof. In order to derive a contradiction, suppose there is no natural number n such that nx > y.
Let S be the set of numbers nx for each natural number n. Since the set S is a nonempty set of
real numbers (it contains 0) bounded from above by y, there is a least upper bound u := supS.
Since x is positive we know that u − x < u, and so u − x is not an upper bound of S. Since
u − x is not an upper bound of S, there has to be a natural number m with mx > u − x. Then
(m+1)x > u− x+ x = u, where m+1 is a natural number. This contradicts our assumption that
u is an upper bound of the set S.

The exponential function

Because the logarithm function is monotone increasing with log 1 = 0, for any α > 0, we have
logα > 0. By Proposition 10 part (a), log(αn) = n logα for each natural number n. By the
Archimedean property, the logarithm function is unbounded, and so each positive real number x is
unambiguously associated with a unique real number log x. We flip this relation and associate to
each real number log x, a unique positive real number x.

To formalize this, we define an inverse function of the logarithm function on R.

Definition 12. The exponential function exp is defined on R such that exp ◦ log and log ◦ exp
are the identity maps x 7→ x.12 More commonly, we write the exponential function as ex, where
elog x = x for x ∈ (0,∞) and log(ex) = x for x ∈ R. The constant e (called Euler’s number) is
defined to be exp(1).

Since log ◦ exp is the constant map x 7→ x, we have (log ◦ exp)′ = 1. Assuming exp is dif-
ferentiable, applying the chain rule gives (log ◦ exp)′ = 1

exp · exp
′. Hence exp′ / exp = 1, and so

exp′ = exp. We restate this important property.

12Observe that exp ◦ log and log ◦ exp are different maps, because although exp is defined on R, the logarithm
function log is only defined on the positive real numbers.
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x

y ex

log x

y = x

1

1

Proposition 13. The derivative of the exponential function is itself. That is, (ex)′ = ex.

The following property is the exponential function’s analogue of Proposition 10 part (a).

Theorem 14. If x and y are real numbers, then ex · ey = ex+y.13

Challenge 13 Prove Theorem 14 and deduce that e0 = 1.

Hyperbolic functions

Definition 15. A function f is even (an even function) if f(x) = f(−x) for each input x. A
function g an odd (an odd function) if g(x) = −g(−x) for each input x.

For example, the absolute value function is even, while the identity function x 7→ x is odd.

Challenge 14

(a) Suppose we have a function f . Let fe : x 7→ f(x)+f(−x)
2 and fo : x 7→ f(x)−f(−x)

2 . Show that
fe is even and fo is odd. Conclude that a function can be written as the sum of an even and
an odd function.

(b) Let function f be written as the sum f(x) = f1(x) + f2(x), where f1 is even and f2 is odd.
We know that such a decomposition is always possible because of part (a). We now show
that a function’s decomposition into odd and even functions is unique. Find an expression
for f(−x), then solve for f1 and f2. Conclude that f1 = fe and f2 = fo as defined in part (a).

13Hint: start with log(exey).
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Definition 16 (Hyperbolic functions). Let x be a real number. Define the functions sinhx (read
sinch), coshx (read cosh), and tanhx (read tanch) by the following.14

sinhx :=
ex − e−x

2
coshx :=

ex + e−x

2
tanhx :=

sinhx

coshx
=

ex − e−x

ex + e−x

Challenge 15 Use the definitions to show that

(a) cosh2 x− sinh2 x = 1,

(b) sinh(x+ y) = sinhx cosh y + coshx sinh y,

(c) sinhx = tanh x√
1−tanh2 x

,15

(d) coshx = 1√
1−tanh2 x

,

(e) sinh′ x = coshx, cosh′ x = sinhx, and tanh′ x = 1/(cosh2 x).

Exponentiation

We now come full circle and obtain the exponentiation rules we encountered in Chapter 1, but
in far greater generality.

Definition 17. Let a be a positive real number. For each real number x, the expression ax is
defined by ax := ex log a.

Proposition 18. Let a and b be positive real numbers. Let x and y be real numbers. Then

(a) a0 = 1,

(b) a−x = 1
ax ,

(c) ax · ay = ax+y,

(d) (a · b)x = ax · bx,
(e) (ax)y = axy.

Proof. These all follow from the properties of the exponential function and the logarithm function.
The only property that is tricky is the final one. By definition, (ax)y = ey log ax

. Once again, by
definition, ax = ex log a. Using the fact that log ◦ exp is an identity map, we have

(ax)y = ey log ax

= ey log(ex log a) = ey(x log a) = e(yx) log a = e(xy) log a = axy.

We now obtain Proposition 10 part (c): for real p, the equality log xp = p log x holds.

Proof. We use the exponentiation rule (aα)β = aαβ .16 Let y := log x so that (i) yp = p log x. By
our definition of y, we know that x = ey. From the exponentiation rules, xp = (ey)p = eyp. By the
definition of the logarithm function, xp = eyp can be written (ii) log(xp) = yp. But (i) = (ii), and
we are done.

14Notice that coshx is the even function of exp(x), while sinhx is the odd function of exp(x).
15The expression tanh2 x means (tanhx)2.
16This is Proposition 18 part (e).
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Challenge 16

(a) Prove Proposition 18.

(b) Let a be a positive real number. Show that the function ax is differentiable and find (ax)′.
Conclude that

∫
ax dx = ax

log a + c.

Challenge 17 (The Power Rule) Let a be a real number and let f : x 7→ xa for x ∈ (0,∞). Show

that f is differentiable and find f ′. Deduce that for real a ̸= −1,
∫
xa dx = xa+1

a+1 + c. Notice that∫
x−1 dx = log |x| + c, for if x < 0, then using the chain rule, we have (log |x|)′ = (log(−x))′ =

1
−x · (−1) = x−1. The case of x = 0 is undefined because 1/0 is undefined, while the positive case

follows from the definition of the logarithm function.17

Challenge 18

(a) Show that the function f : x 7→ 1/x defined on the nonzero reals is continuous by showing that
f is continuous at each nonzero a (this justifies our earlier use of the Fundamental Theorem
of Calculus to find log′).

(b) Differentiable functions are an especially nice class of continuous functions. This does not
mean differentiable functions can necessarily be integrated! Let f : x 7→ 1/x be defined on
the interval (0, 1). Show that f is differentiable and that f can be integrated on the interval
(α, 1), for each α such that 0 < α < 1. Argue that f cannot be integrated on the interval
(0, 1).

(c) We find the integral
∫ 1

−1
f(x) dx for the function f : x 7→ 1/x2. By the power rule, (−x−1)′ =

1/x2 and so the fundamental theorem of calculus gives
∫ 1

−1
f(x) dx = (−x−1)

∣∣1
x=−1

= −2.
Even though f is a positive function, its integral is negative! What did we do wrong?

What about negative numbers? Since the logarithm function is undefined for negative num-
bers (and also 0), we do not have a way to define xa for all real x. Indeed, can we make sense of
the expression xa if x = −1 and a = 1/2? This question essentially asks: is there a number squared
that equals −1? Right now, the answer is a no, for we cannot square any real number to get a
negative number.

17Recall that the logarithm function is only defined on (0,∞). By chaining the function with the absolute value
function, we can define the function on negative real numbers.
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Limits

We have been able to develop quite a bit of calculus. Nevertheless, there is an Achilles heel.
Suppose we presented our findings, beginning with what a derivative is. The question we are going
to get is: what is this object o(1)?

I hope that after working with it for quite some time, to both of us the object o(1) makes
intuitive sense. However, perhaps it is time we really think about what exactly o(1) is.

Let us revisit the definition of a derivative. If a function f is differentiable at t, then there is a
number f ′(t) such that the following equation holds.1

f(t+ α) = f(t) + f ′(t)α+ αo(1)

Subtract the number f(t) from both sides of the equation and divide both sides by α to get

f(t+ α)− f(t)

α
= f ′(t) + o(1).

What the equation above means is that if we drop α → 0, then f ′(t) is given by the quotient on
the left side. Let us spell out the fact that we take α→ 0 by using the notation “lim” as follows.

f ′(t) = lim
α→0

f(t+ α)− f(t)

α

Recall that a function f is continuous at t if f(t+α) = f(t)+ o(1). We can also state the fact that
we drop α to zero explicitly by using the notation “lim” as follows.

lim
α→0

f(t+ α) = f(t)

We say that a derivative is a limit, and that continuity of a function is defined by a limit.2

We see that when we were using o(1) and when we were working with derivatives and continuous
functions, we have been secretly working with limits. So what then is a limit?

1Since −o(1) and o(1) are the same thing, we have removed the absolute value on α.
2Integrals are also the result of some limiting process, but a first course in calculus is not the place for that.
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4.1 What is a Limit?

Continuity

In the definition of the derivative, the limit is used to show us that the quotient f(t+α)−f(t)
α gets

closer to the number f ′(t) as α drops to smaller values. Similarly, in the definition of continuity,
the limit is used to signify that f(t+α) gets closer to the number f(t) as α drops to smaller values,
that is: as α gets closer to 0. We will have to quantify what we mean by “close” in both instances.

To be concrete, suppose we have a function f that takes as input time, and outputs distances.
For example, we can imagine that function f describes the location of an object over time.

In order to quantify closeness in distances, we will need to pick a unit of measurement. But here
is a question: is 5 meters close? It is incredibly close in galactic scales, but quite far for an ant. A
micrometer will satisfy an ant, but is huge in atomic scales. Because of this, it is actually impossible
to satisfy everyone on what closeness means. So we will accept the fact that not everyone will be in
agreement, only that some will be in agreement. Then, we will consider all possible choice of units
of a distance so that at the end of the day, everyone will be satisfied.

So let us denote one possible choice of unit of distances u0. Units of measurement must be
positive, so u0 > 0. Once again, some will be disappointed at our choice of unit, but they will get
their turn because we will exhaust all possible units. We are simply beginning with u0. For this
turn, we will agree that the values f(x) and f(t) are close if their difference is within one unit, u0.
The naive expression f(x) − f(t) < u0 will hold if the left side is negative, regardless of whether
f(x) and f(t) are close or not. Therefore, we will need to use absolute values, and we will say that
the values f(x) and f(t) are close if |f(x)− f(t)| < u0.

All done? Well not quite. Where are the inputs to function f coming from? The inputs are
time, and we want distances f(x) and f(t) to be close whenever times x and t are close. To measure
closeness in time, once again, we will need to choose a unit of time. This choice of unit will depend
on the proportions of u0. For example, if u0 is of galactic scales, tens of thousands of years could
be sufficient, but in the scale of ants something much smaller will be required. But in any case,
once there is some unit of time u(u0) which provides a closeness measure in time, we can proceed
to check that each time x within that closeness measure of t will allow f(x) to be close to f(t).
If such a unit u(u0) exists, then we have satisfied some people that f is continuous (nearby time
maps to nearby distance). We then choose another unit of distance and repeat the process.

To summarize: for each unit of distance u0 > 0, if there is some unit of time u(u0) > 0 such that
|f(x)−f(t)| < u0 for each time x satisfying |x−t| < u(u0), then we can conclude that f is continuous
at t. We write this compactly as limx→t f(x) = f(t). Notice that redoing our previous discussion,
but replacing the input x with t+ α gives the analogous statement for limα→0 f(t+ α) = f(t).

A limit

Now let us turn to the definition of a derivative of a function f at t. We will know that f is
differentiable at t with derivative f ′(t) once we verify that: for each unit of distance u0 > 0, there
is some unit of time u(u0) > 0 such that∣∣∣∣f(t+ α)− f(t)

α
− f ′(t)

∣∣∣∣ < u0

for each time t+ α satisfying |(t+ α)− t| < u(u0).
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There is a problem here. The time t + α for α = 0 satisfies |(t + α) − t| < u(u0) because

0 < u(u0). But if α = 0, then the quotient f(t+α)−f(t)
α is undefined as it is a division by zero! We

will have to fix this by insisting that we ignore the time t. Instead of looking at points t+ α that
are close to t by the unit u, we will look at points x that are close to t by the unit u, but not equal
to t.

We summarize our finding. We will know that f is differentiable at t with derivative f ′(t) once
we verify that: for each unit of distance u0 > 0, there is some unit of time u(u0) > 0 such that∣∣∣∣f(x)− f(t)

x− t
− f ′(t)

∣∣∣∣ < u0

for each time input x ̸=t satisfying |x− t| < u(u0).
3 We write this compactly as limx→t

f(x)−f(t)
x−t =

f ′(t). Analogously, by replacing x with t+ α: f is differentiable at t with derivative f ′(t) once we
verify that: for each unit of distance u0 > 0, there is some unit of time u(u0) > 0 such that∣∣∣∣f(t+ α)− f(t)

α
− f ′(t)

∣∣∣∣ < u0

for each time input t+ α with 0 < |α| < u(u0). This is written limα→0
f(t+α)−f(t)

α = f ′(t).

We have essentially obtained the definition of a limit. Tradition dictates that we denote the
unit of measurement for the output u0 by the Greek letter ϵ and the unit of measurement for the
input u(u0) by the Greek letter δ(ϵ).

Definition 19. A function f has a limit l at input t, written limx→t f(x) = l, if for each ϵ > 0,
there is some δ(ϵ) > 0 such that whenever x ̸=t satisfies |x− t| < δ(ϵ), we have |f(x)− l| < ϵ.

From the definition, it is sufficient to exhibit a strictly positive function δ with the property
that for each input ϵ > 0, whenever x ̸=t satisfies |x− t| < δ(ϵ), we have |f(x)− l| < ϵ.4 This simply
formalizes the idea that we have a rule δ associating each unit of output ϵ to a unit of input δ(ϵ).

As an example, let us show that a constant function f : x 7→ c for some constant c satisfies
limx→t f(x) = c for each t. For ϵ > 0 let δ(ϵ) := ϵ. Then for each x ̸=t such that |x−t| < δ(ϵ) = ϵ, we
have |f(x)− f(t)| = |c− c| = 0 < ϵ, as desired. The proof that g : x 7→ x satisfies limx→t g(x) = t is
essentially the same, with the only difference being the last part: |g(x)− g(t)| = |x− t| < δ(ϵ) = ϵ.

The definition of a limit looks very complicated. But it is complicated mainly because we
have several things to keep track of, necessitating the employment of many different symbols. The
definition itself is as natural and as simple as it could be: for each unit of measurement ϵ for
outputs, there will be a unit of measurement δ(ϵ) for inputs such that each input that is close by
δ(ϵ) to t (but not close by zero) will map to outputs that are close to l by ϵ. This modern definition
of a limit is due to Karl Weierstrass from the mid 19th Century (building upon the work of many
predecessors like Bernard Bolzano and Augustin Cauchy), almost two Centuries after the invention
of calculus!

With the definition of a limit settled, the definition of continuity is simple.

Definition 20. A function f is continuous at t if limx→t f(x) = f(t).

3The notation x ̸=t means: “the number x, which is not equal to t”.
4A function f is strictly positive if its values are greater than 0, wherever it is defined.
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Let us check that the square root function f : x 7→
√
x is continuous on the interval (0,∞). We

will show that if t ∈ (0,∞), then limx→t f(x) =
√
t. Suppose δ is some strictly positive function.

For each x satisfying |x− t| < δ(ϵ), we use a multiplication by 1 trick and homogeneity to get∣∣∣√x−√t∣∣∣ = ∣∣∣∣(√x−√t)√x+
√
t

√
x+
√
t

∣∣∣∣ = ∣∣∣∣ x− t
√
x+
√
t

∣∣∣∣ = |x− t|
|
√
x+
√
t|

<
δ(ϵ)

|
√
x+
√
t|
.

These expressions only make sense if x ≥ 0 because a square root of a negative number is undefined.
We thus have a clue that we require δ(ϵ) ≤ t. Next, we observe that the absolute value function is
an increasing function, and so if |x − t| < t,5 then |

√
x +
√
t| ≥ |

√
t|. Therefore, 1

|
√
x+

√
t| ≤

1
|
√
t| .

Now define δ : ϵ 7→ min
(
ϵ
√
t, t
)
.6 Since δ(ϵ) ≤ t, we know that

√
x is defined. Furthermore, since

δ(ϵ) ≤ ϵ
√
t, ∣∣∣√x−√t∣∣∣ < δ(ϵ)

|
√
x+
√
t|
≤ δ(ϵ)

|
√
t|
≤ ϵ
√
t

|
√
t|

= ϵ.

We conclude that the square root function is continuous on the interval (0,∞).

4.2 Arithmetic of Limits

Uniqueness

With the definition of a limit at hand, we proceed as we did for derivatives and see what kind
of arithmetic rules they permit. But first, we need to check that a limit of a function at a point is
unique, otherwise we will be in trouble!

Proposition 21 (Limits are unique). If limx→t f(x) = l1 and limx→t f(x) = l2, then l1 = l2.

Proof. Let ϵ > 0. Since limx→t f(x) = l1, by the definition of a limit, there is a δ1(ϵ) > 0 such that
|f(x)− l1| < ϵ for each input x ̸=t with |x− t| < δ1(ϵ). Similarly, since limx→t f(x) = l2, there is a
δ2(ϵ) > 0 such that |f(x)− l2| < ϵ for each input x ̸=t with |x− t| < δ2(ϵ).

For one unit of measurement for the output there are two units of measurement for the input.
Two units of measurement for the input is one too many. We will err on the side of caution and
pick the smaller of the two by setting δ(ϵ) := min ( δ1(ϵ), δ2(ϵ) ). The reasoning is this: we want to
measure closeness of inputs, and by being more stringent and picking a smaller unit of measurement,
we will offend no one. On the other hand, if we picked the larger unit of measurement, then some
will no longer agree that the inputs are close.

Our choice of unit δ(ϵ) means that for each x ̸=t with |x−t| < δ(ϵ), we satisfy both |x−t| < δ1(ϵ)
and |x − t| < δ2(ϵ). Therefore, |f(x) − l1| < ϵ and |f(x) − l2| < ϵ are both true whenever x ̸=t is
within δ(ϵ) of t.

All that is left is to check that |l1 − l2| = 0. By the triangle inequality,

|l1 − l2| = |l1 − f(x) + f(x)− l2| ≤ |l1 − f(x)|+ |f(x)− l2|.

By homogeneity, |l1 − f(x)| = | − 1||f(x)− l1| = |f(x)− l1|. Therefore,

|l1 − l2| ≤ |f(x)− l1|+ |f(x)− l2| < ϵ+ ϵ = 2ϵ.

5This is simply there to make sure x is positive and thus
√
x is defined.

6The function “min” takes two inputs and outputs whichever is smaller. For example, min(−10, 2) = −10.
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But this must be true for any unit of measurement ϵ, no matter how small. Thus the real number
|l1 − l2| is a lower bound on the set of positive real numbers, and must be zero or smaller. By the
definition of the absolute value function, |l1 − l2| ≥ 0, and so |l1 − l2| = 0.

Sum rule

As we have done previously, the first arithmetic operation we will discuss is the summation of
limits. The sum rule for limits states that the sum of limits behaves just as expected.

Proposition 22 (Sum Rule). If limx→t f(x) = l1 and limx→t g(x) = l2, then

lim
x→t

(f + g)(x) = l1 + l2.

Proof. Let ϵ > 0. Our goal is to find a unit of measurement δ(ϵ) > 0 that makes each x ̸=t close to
t map within unit ϵ of l1 + l2.

Since limx→t f(x) = l1, by the definition of a limit, there is some δ1(ϵ) > 0 such that |f(x)−l1| <
ϵ for each x ̸=t with |x − t| < δ1(ϵ). Similarly, since limx→t f(x) = l2, by the definition of a limit,
there is some δ2(ϵ) > 0 such that |f(x)− l2| < ϵ for each x̸=t with |x− t| < δ2(ϵ).

Once again, there are two units of measurement for the input. We set δ(ϵ) := min ( δ1(ϵ), δ2(ϵ) )
so that each input x̸=t with |x− t| < δ(ϵ) will satisfy both |f(x)− l1| < ϵ and |f(x)− l2| < ϵ.

By the triangle inequality,∣∣(f + g)(x)− (l1 + l2)
∣∣ = ∣∣f(x)− l1 + g(x)− l2

∣∣ = ∣∣f(x)− l1
∣∣+ ∣∣g(x)− l2

∣∣ < ϵ+ ϵ = 2ϵ.

The definition requires that in order to conclude limx→t(f + g)(x) = l1 + l2, we need
∣∣(f + g)(x)−

(l1+l2)
∣∣ < ϵ. But this can be achieved by changing the first statement of the proof to “Let ϵ/2 > 0.”

and then substituting all instances of ϵ by ϵ/2. So we are done!

Product rule

Proposition 23 (Product Rule). If limx→t f(x) = l1 and limx→t g(x) = l2, then

lim
x→t

(fg)(x) = l1 · l2.

The product rule for limits states that the products of limits behaves just as expected. However,
the proof will be quite hairy because it will not be sufficient to take the unit of input to be
δ(ϵ) := min ( δ1(ϵ), δ2(ϵ) ). To see this, let us see what our end goal of the proof is. Ultimately,
we want to show that each output (fg)(x) is close to l1l2. That is, there is a suitable unit of
measurement for inputs such that inputs x ̸=t close to t will guarantee

∣∣(fg)(x) − l1l2
∣∣ < c · ϵ

for some positive constant c.7 By applying the triangle inequality and homogeneity on a sneaky
addition and subtraction of the term f(x)l2, the following holds.

|(fg)(x)− l1l2| = |f(x)g(x)− f(x)l2 + f(x)l2 − l1l2| ≤ |f(x)|︸ ︷︷ ︸
<???

|g(x)− l2|︸ ︷︷ ︸
<ϵ

+ |f(x)− l1|︸ ︷︷ ︸
<ϵ

|l2|

7As in the proof of the sum rule, we can always scale ϵ by a positive constant c.
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Since limx→t f(x) = l1 and limx→t f(x) = l2, the terms |f(x)− l1| and |g(x)− l2| are each less than
ϵ. The term |l2| is a constant, so that’s ok, but the term |f(x)| is not a constant, and that is a
problem. Our solution will be to choose a unit of measurement for the input such that inputs x ̸=t

close to t will satisfy |f(x)| < |l1|+ 1. Then, we will have∣∣(fg)(x)− l1l2
∣∣ ≤ |f(x)||g(x)− l2|+ |f(x)− l1||l2| < (|l1|+ 1)ϵ+ ϵ|l2| = (|l1|+ |l2|+ 1)ϵ,

where (|l1|+ |l2|+ 1) is simply a positive constant.

So how can ensure that |f(x)| < |l1|+ 1? We need a slight variation on the triangle inequality:
|a| − |b| ≤ |a − b|.8 Since |f(x)| < |l1| + 1 is the same as |f(x)| − |l1| < 1, the modified triangle
inequality shows us that it is sufficient to choose a unit of inputs δ(ϵ) such that x maps to values
satisfying |f(x) − l1| < 1. What does this mean? Well, if the unit of outputs ϵ satisfies ϵ ≤ 1,
then we know that |f(x)− l1| < ϵ ≤ 1 is true for an appropriate choice of unit δ(ϵ), and all is well.
The problem is when the unit of outputs ϵ is greater than one, because now we can have situations
where |f(x)− l1| < ϵ but |f(x)− l1| ≥ 1, and the value |f(x)| may stray too far from l1.

But there is an easy fix! Whenever we have to make our choice of unit δ(ϵ) and we are faced
with ϵ > 1, we pretend that ϵ = 1. For example, if ϵ is the distance from the sun to the earth, when
it comes time to pick our unit of inputs, we will be pessimistic and pick δ(ϵ) as if ϵ is the distance
from the earth to the moon. This way, the values of |f(x)| will be even closer to l1 than usual, and
we can guarantee that |f(x)| < |l1|+ 1, say.

We now proceed to the proof of the product rule.

Proof. Suppose limx→t f(x) = l1 and limx→t g(x) = l2. We wish to show that there is some strictly
positive function δ such that whenever x ̸=t is within the distance of δ(ϵ) to t, then |(fg)(x)− l1 · l2| <
c·ϵ for some positive constant c.9 From limx→t f(x) = l1, we know there is a strictly positive function
δ1 such that whenever x ̸=t is within δ1(ϵ) of t, then |f(x)− l1| < ϵ. Similarly, from limx→t g(x) = l2,
we know there is a strictly positive function δ2 such that whenever x ̸=t is within δ2(ϵ) of t, then
|g(x)− l2| < ϵ. The triangle inequality and homogeneity gives the following inequality, as we
discussed before.

|(fg)(x)− l1l2| ≤ |f(x)||g(x)− l2|+ |f(x)− l1||l2|

Let δ be the function defined by δ : ϵ 7→ min ( δ1(min(1, ϵ)), δ2(ϵ) ). The definition of δ is
difficult to parse, so below is the same in pseudocode. It is quite simple, we want to take the
minimum of δ1(ϵ) and δ2(ϵ), but before we do so, in order to make |f(x)| closer to |l1| than usual,
we pretend ϵ = 1 for δ1(ϵ) whenever ϵ > 1.

def δ(ϵ):

if ϵ ≤ 1:

d1 ← δ1(ϵ)

else:

d1 ← δ1(1)

return min(d1, δ2(ϵ))

8This was left for you in Challenge 7, but I will prove it again. It is sufficient to show that |a| ≤ |a− b|+ |b|. But
this is simply the triangle inequality |c+ d| ≤ |c|+ |d| for c := a− b and d := b. Done!

9The nonzero constant c has to stay the same, regardless of the value of ϵ. Remember, the idea is that it is
possible to finish the proof, go back and do the substitution ϵ 7→ ϵ/c. If c changes with ϵ, a substitution is no longer
possible.
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There are two possibilities: either ϵ ≤ 1 or ϵ > 1. In the former case, for each input x ̸=t within
δ(ϵ) of t, we have

|(fg)(x)− l1l2| ≤ |f(x)|︸ ︷︷ ︸
(∗)

|g(x)− l2|︸ ︷︷ ︸
(∗∗)

+ |f(x)− l1|︸ ︷︷ ︸
(∗∗∗)

|l2| < (|l1|+ ϵ)︸ ︷︷ ︸
(∗)

ϵ︸︷︷︸
(∗∗)

+ ϵ︸︷︷︸
(∗∗∗)

|l2|

The inequality |f(x)| < |l1|+ ϵ holds because |f(x)| − |l1| ≤ |f(x)− l1| < ϵ. Since ϵ ≤ 1,

|(fg)(x)− l1l2| < (|l1|+ ϵ)ϵ+ ϵ · |l2| ≤ (|l1|+ 1)ϵ+ ϵ · |l2| = (|l1|+ |l2|+ 1)ϵ.

How about the case when ϵ > 1? We treat ϵ as if it is 1, which was covered in the previous case,
so we are done!

The proof of the product rule for limits is difficult. I still remember first seeing a proof of this
result and being absolutely terrified! The digestion of this proof is not necessary to understand and
practice calculus, which is why we are diving into these matters after seeing calculus in action.

Now that we are done with the proof, let us note that only two new ideas were needed. The
first was the sneaky manipulation

|(fg)(x)− l1l2| = |f(x)g(x)− f(x)l2 + f(x)l2 − l1l2| ≤ |f(x)||g(x)− l2|+ |f(x)− l1||l2|. (4.1)

The second is the realization that defining δ : ϵ 7→ min
(
δ1(ϵ), δ2(ϵ)

)
is not enough. By Equation

4.1 above, we need to make sure that |f(x)| is small. We accomplished this by ensuring |f(x)| is
within distance 1 of |l1|, regardless of the value of ϵ.

Challenge 19 Suppose we have a function f such that limx→t f(x) = l holds. By definition,
there is a function δ that takes as input a positive real number ϵ and outputs a positive real number
such that each x ̸=t that is within δ(ϵ) distance of t satisfies |f(x)− l| < ϵ.

(a) Let δ′ : ϵ→ δ(ϵ)/2. For each x ̸=t within δ′(ϵ) of t, can we guarantee that |f(x)− l| < ϵ holds?
Repeat for δ′′ : ϵ→ δ(ϵ)/c, where c > 1 is a constant.

(b) Instead of dividing, suppose we define δ′ : ϵ → 2 · δ(ϵ). If x ̸=t is within δ′(ϵ) of t, can we
guarantee that |f(x)− l| < ϵ? Repeat for δ′′ : ϵ→ c · δ(ϵ), where c > 1 is a constant.

(c) Let c > 1 be a constant. For each of the following definitions of δi, identify the ones that
guarantee that each x ̸=t within δi(ϵ) of t satisfies |f(x)− l| < ϵ.

δ1 : ϵ 7→ δ(ϵ/2), δ2 : ϵ 7→ δ(2ϵ), δ3 : ϵ 7→ δ(ϵ/c), δ4 : ϵ 7→ δ(cϵ)

(d) Now suppose we had two functions δ∗ and δ∗∗ such that each x ̸=t within δ∗(ϵ) satisfies

|f(x)− l| < ϵ, and each x ̸=t within δ∗∗(ϵ) satisfies |f(x)− l| < ϵ. Does the function δ̃ defined
below ensure that each x ̸=t within δ∗(ϵ) satisfy |f(x)− l| < ϵ?

δ̃ : ϵ 7→ min ( δ∗(ϵ), δ∗∗(ϵ) )

(e) Repeat part (d), but this time assume that δ∗∗ is some mystery function that takes in a
positive real number and outputs some random positive real number. The function δ∗ is the
same as before.

The definition of a limit is often written concisely using the symbol ∀, which reads: “for each”,
the symbol ∃, which reads: “there is” or “there exists”, and the symbol =⇒ , which reads “implies”.
Using these symbols the expression limh→y f(h) = l means

(∀ϵ > 0)(∃δ(ϵ) > 0)(∀x ∈ R) (0 < |x− t| < δ(ϵ) =⇒ |f(x)− l| < ϵ) .
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Challenge 20

(a) Suppose someone told you that: a function f has a limit l at a point t, if for each δ > 0,
there is some ϵ > 0 such that for each x ̸=t satisfying |x− t| < δ, we have |f(x)− l| < ϵ. Write
this “definition” down using the symbols ∀,∃, and =⇒ . Give some intuition as to why this
“definition” is incorrect.10 Our habit of writing δ(ϵ) should tip you off immediately!

(b) Suppose we were trying to prove that limx→t f(x) = l, but when working with a specific value
of ϵ, we failed to find a δ(ϵ) > 0 that guarantees 0 < |x − t| < δ(ϵ) ⇒ |f(x) − l| < ϵ. We
are forced to conclude that limx→t f(x) ̸= l. Write the definition of limx→t f(x) ̸= l using the
symbols ∀,∃, and ⇒.11

(c) Show that the following proposed “definition” of limx→t f(x) = l is incorrect by using it prove
that if f : x 7→ c for some constant c, then limx→1 f(x) ̸= c.12

(∀ϵ > 0)(∃δ(ϵ) > 0)(∀x ∈ R) (|f(x)− l| < ϵ =⇒ 0 < |x− t| < δ(ϵ))

Quotient rule

We have one more arithmetic rule left: division.13

Proposition 24 (Quotient Rule). If limx→t f(x) = l1 and g is a nonzero function with limx→t g(x) =
l2 ̸= 0, then

lim
x→t

(f/g)(x) = l1/l2.

This one is also tricky, but no more difficult than the product rule. We will first show that
limx→t(1/g)(x) = 1/l2, and then apply the product rule. As usual, we wish to show that |(1/g)(x)−
1/l2| < c · ϵ for some constant c. Using homogeneity and the identity 1

a −
1
b = b−a

ab gives∣∣∣∣ 1

g(x)
− 1

l2

∣∣∣∣ = |l2 − g(x)|
|g(x)l2|

=
|g(x)− l2|
|l2|︸ ︷︷ ︸

<ϵ/|l2|

· 1

|g(x)|︸ ︷︷ ︸
<???

.

Like before, we need to pick some unit of measurement for the input such that 1/|g(x)| is bounded.
Let us try to bound 1/|g(x)| by some positive constant. Observe that if |g(x)− l2| < min(ϵ,X),

then the inequality |a| − |b| ≤ |a− b| gives

|l2| − |g(x)| ≤ |l2 − g(x)| < X.

The idea is to repeat what we did in the product rule: if ϵ is too big (for the product rule, whenever
ϵ > 1), then we pretend ϵ is smaller. In this case, if ϵ is too big, then we pretend as if ϵ = X.

10Here is one possible answer. Yours will be better. A function f is continuous at t if limx→t f(x) = f(t). So
the “definition” tells us that if we zoom into the graph of the function by decreasing the unit of measurement of the
input, we will see whether the function is continuous. Consider a constant ℏ whose numerical value is about 1 ·10−34.
Try zooming in on the x-axis of the step function f : x 7→ ℏ if x < 0 and f : x 7→ 0 if x ≥ 0, and it won’t help at all!
The graph will continue to look like a constant function with no change. What we need to do is zoom into the graph
by decreasing the unit of measurement in the y-axis so that we can make out the step from zero to ℏ around x = 0.

11Answer: (∃ϵ > 0)(∀δ(ϵ) > 0)(∃x ∈ R) (0 < |x− t| < δ(ϵ) ⇒ |f(x)− l| ≥ ϵ).
12Hint: we will first need to repeat part (b) for this new “definition”.
13Subtraction is verified in the same way as the subtraction rule for derivatives.
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Assuming that |l2| −X is positive, rearranging the inequality above gives

|l2| −X < |g(x)| =⇒ 1

|g(x)|
<

1

|l2| −X
.

For example, if X := |l2|/2, then |l2| −X = X and we have 1/|g(x)| < 2/|l2|.

Proof. First, we show that limx→t(1/g)(x) = 1/l2. By assumption, there is some positive function
δ′ such that each x ̸=t within δ′(ϵ) satisfies |g(x) − l2| < ϵ. Recall from our preliminary discussion
that homogeneity gives ∣∣∣∣ 1

g(x)
− 1

l2

∣∣∣∣ = |g(x)− l2|
|l2|

1

|g(x)|
.

Observe that if |g(x)− l2| < min(ϵ, |l2|/2), then the inequality |a| − |b| ≤ |a− b| gives

|l2| − |g(x)| ≤ |l2 − g(x)| < |l2|
2

=⇒ |l2| −
|l2|
2

< |g(x)| =⇒ 1

|g(x)|
<

2

|l2|
.

Let δ : ϵ 7→ δ′ ( min(ϵ, |l2|/2) ). Then each x ̸=t within distance δ(ϵ) of t satisfies∣∣∣∣ 1

g(x)
− 1

l2

∣∣∣∣ = |g(x)− l2|
|l2|︸ ︷︷ ︸
(∗)

1

|g(x)|︸ ︷︷ ︸
(∗∗)

<
ϵ

|l2|︸︷︷︸
(∗)

2

|l2|︸︷︷︸
(∗∗)

=
2

|l2|2
ϵ.

We have found a strictly positive function δ such that no matter what ϵ > 0 we may need to work
with, our function δ ensures that each x̸=t within δ(ϵ) of t satisfies

|(1/g)(x)− 1/l2| < c · ϵ

for the constant c := 2/|l2|2. Hence limx→t(1/g)(x) = 1/l2. The final result is obtained by applying
the product rule to f · (1/g).

The quotient rule is incredibly useful. For one thing, a derivative is a limit of a quotient!
As an example, let us calculate the derivative of the square root function f : x 7→

√
x for x >

0 from scratch. There are now many definitions to choose from. How about we use f ′(x) :=

limα→0
f(x+α)−f(x)

α . First, we need to do some algebraic manipulations. We use the trick of
multiplying by 1 and simplifying to get the following.

f(x+ α)− f(x)

α
=

√
x+ α−

√
x

α
=

√
x+ α−

√
x

α

(√
x+ α+

√
x√

x+ α+
√
x

)
=

α

α(
√
x+ α+

√
x)

=
1√

x+ α+
√
x

Earlier on, we showed that the square root function is continuous. Thus limα→0

√
x+ α =

√
x and

we have

f ′(x) = lim
α→0

1√
x+ α+

√
x
=

limα→0 1

limα→0(
√
x+ α+

√
x)

=
1√

x+
√
x
=

1

2
√
x
= (1/2)(x−1/2).
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As we expected from the power rule: (x1/2)′ = (1/2)(x−1/2).

The differentiation rule that corresponds to the quotient rule for limits is the quotient rule for
derivatives. Let us rederive the quotient rule for derivatives, albeit in slightly greater generality
than we have done before. First we will prove the reciprocal rule (1/f)′ = −f ′/f2.

Proposition 25 (Reciprocal Rule). Suppose f is differentiable at t and f(t) is nonzero. Then

(1/f)′(t) = − f ′(t)

[f(t)]
2 .

Proof. We start with a definition of the derivative and go from there.

(1/f)′(t) = lim
α→0

1
f(t+α) −

1
f(t)

α
= lim

α→0

f(t)− f(t+ α)

αf(t+ α)f(t)
= lim

α→0

(
f(t)− f(t+ α)

α
· 1

f(t+ α)f(t)

)
We are in a position to apply the product rule. Since f is differentiable at t, it is continuous at t.
Hence limα→0 f(t+ α) = f(t) and we have

(1/f)′(t) = lim
α→0

−[f(t+ α)− f(t)]

α
lim
α→0

1

f(t+ α)f(t)
= −f ′(t)

limα→0 1

f(t) limα→0 f(t+ α)
= − f ′(t)

f(t)2
.

We once again prove the quotient rule. This time we no longer need the assumption that (f/g)
is differentiable. That (f/g) is differentiable is a consequence of the quotient rule.

Proposition 26 (Quotient Rule). Suppose f and g are differentiable at t, with g(t) ̸= 0. Then

(f/g) is differentiable at t with (f/g)′(t) = f ′(t)g(t)−f(t)g′(t)
[g(t)]2 .

Proof. By the reciprocal rule, the function (1/g) is differentiable at t and so we may apply the
product rule to obtain (f · 1/g)′(t) = (f ′/g)(t) + [f(1/g)′](t). By the reciprocal rule, (1/g)′(t) =
−g′(t)/[g(t)2] and so (

f

g

)′

(t) =
f ′(t)

g(t)
− f(t)g′(t)

g(t)2
=

f ′(t)g(t)− f(t)g′(t)

g(t)2
.

This rule is rather difficult to memorize correctly (but it will be memorized after you apply this
rule many times over). Initially, it might be easier to obtain the correct formula from scratch by
obtaining the product rule from dimensional analysis and then applying it to the product (f/g) · g
to find the quotient rule. The reciprocal rule then also comes for free and there is no need to worry
about whether you got the minus sign in the correct place.
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Challenge 21 (Power rule for rational numbers) We check that the power rule applies to rational
powers. All functions discussed below are not defined at zero.14

(a) Use the reciprocal rule to show that x−1 is differentiable and that (x−1)′ = −x−2.

(b) (Power rule for integers) If m is a negative integer, show that (xm)′ = mxm−1.

(c) Show that 1/
√
x, defined on (0,∞) is differentiable and find the derivative. [Hint: Use the

reciprocal rule and the chain rule.]

(d) Let f : x 7→ x1/n, where n is a positive integer. By definition, f(x)n = x. Differentiate both
sides (one side needs the chain rule) and solve for f ′(x) to show that f ′(x) = 1

nx
1/n−1.

(e) Let f : x 7→ xm/n, where m is an integer and n is a positive integer. Apply the chain rule to
show that f ′(x) = m

n xm/n−1. Conclude that if p is rational, then for the function f : x 7→ xp

defined on (0,∞), we have f ′(x) = pxp−1.

The following is yet another application of the quotient rule for limits.

Theorem 27 (Bernoulli’s rule). Suppose f and g are differentiable at t with g′(t) ̸= 0. Furthermore,
assume that f(t) = g(t) = 0. Then

lim
x→t

f(x)

g(x)
=

f ′(t)

g′(t)

Proof. Since f and g are differentiable at t,

f ′(t)

g′(t)
=

limx→t
f(x)−f(t)

x−t

limx→t
g(x)−g(t)

x−t

.

By the quotient rule, the limit can be pulled out. Since f(t) = g(t) = 0, and x − t is nonzero (by
the definition of a limit), we have

f ′(t)

g′(t)
= lim

x→t

f(x)−f(t)
x−t

g(x)−g(t)
x−t

= lim
x→t

f(x)
x−t

g(x)
x−t

= lim
x→t

f(x)

g(x)
.

4.3 Further Notions

Little oh

For a function f with the property limx→0 f(x) = 0, we have used the shorthand f = o(1).
The object o(1) is the collection of functions g with the property limx→0 g(x) = 0. Thus the
expression f = o(1) means that f is an element of o(1). This means that the expression o(1) = f is
incorrect because the set o(1) cannot be an element of a function. On the other hand, the expression
c · o(1) = o(1) means that the objects on both sides of the equation are the same objects.

There is a more general concept: if g is a nonzero function, then f = o(g) means that

lim
x→0

f(x)

g(x)
= 0.

14We cannot divide by 0, and so 1/(0p) for rational p makes no sense.
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If g : x 7→ 1, then we recover f = o(1). Actually, from the definition, for each positive c > 0,
o(c) = o(1). Once again, the object o(g) is a set of functions with the above property, and f = o(g)
means that f is an element of the set o(g). Using this notation, the definition of the derivative may
be written using o(α) in place of |α|o(1). Thus f is differentiable at t if there is a number f ′(t)
such that the following holds.

f(t+ α) = f(t) + f ′(t)α+ o(α)

Challenge 22

(a) Use the well-ordering principle and Bernoulli’s rule to show that xn = o(ex) for each positive
integer n.

(b) By definition α · o(1) and o(α) are the same objects (α is not a constant!). Check that
o(α) + o(α) = o(α), that for each constant c, c · o(α) = o(α), and that o(α)o(α) = o(α).

I should note that if you see f = o(g) in the wild, it will mean the following limit is satisfied.

lim
x→∞

f(x)

g(x)
= 0

The meaning remains the same: f is negligible compared to g, or in the case of f = o(1), that f is
negligible.

The symbol limx→∞ f(x) = l means: as x is allowed to grow, f(x) approaches the number l.
To capture the idea that the input is allowed to grow, we pick some height level n > 0 and then
check that for each input x exceeding that height, |f(x) − l| < ϵ. But one height that is large for
one entity will be microscopic to another. So we need to consider all possible height levels of the
input. The formal definition of the expression limx→∞ f(x) = l is then: for each ϵ > 0, there is
some positive integer n such that for each x > n, we have |f(x)− l| < ϵ.

One sided limits

In the case of limx→∞, there is a distinguished direction in which we take the limit: from smaller
values of x to larger values (to our right). On the other hand, the square root function f : x 7→

√
x

graphed below is undefined for negative real numbers, so there is no way to take a limit from smaller
x to larger x at the origin, because x will be negative.

x

y

√
x

1

1

Nevertheless, we wish to speak of a limit of the square root function at the origin, as it clearly
should take the limit value of 0. We formalize this with a one sided limit.

A function f has a limit l from above at input t, if for each ϵ > 0, there is a δ(ϵ) > 0 such
that each x ∈ (t, t+ δ(ϵ)) is guaranteed to satisfy f(x) ∈

(
l − ϵ, l + ϵ

)
. We write this using the

notation limx→t+ f(x) = l.
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Notice that the statement f(x) ∈
(
l− ϵ, l+ ϵ

)
is equivalent to the statement |f(x)− l| < ϵ. Both

statements mean the same thing: f(x) is within ϵ of l.

Challenge 23

(a) Verify that limx→0+
√
x = 0.15

(b) Formulate a definition for a function f to have a limit l from below at point t. The symbol
used in such a case is limx→t− f(x) = l.

(c) Suppose we have a function f such that limx→t f(x) = l. Show that not only do both
limx→t+ f(x) and limx→t− f(x) exist, but they are equal.

(d) Conversely, suppose we have a function f with the property that limx→t+ f(x) = limx→t− f(x).
Show that limx→t f(x) exists.

16 Combining parts (c) and (d), we say that limx→t f(x) exists
if and only if limx→t+ f(x) = limx→t− f(x). The term “if and only if” indicates equivalence.

Limits and inequalities

Whenever we use properties like if |f | ≤ o(1), then f = o(1), we are using limits with inequalities.
We now check that limits work as expected with inequalities.

Proposition 28. If f ≤ g with limx→t f(x) = l1 and limx→t g(x) = l2, then l1 ≤ l2.

Proof. We wish to show that l := l2 − l1 ≥ 0. In order to derive a contradiction, suppose l < 0.

Let h : x 7→ g(x)−f(x) and observe that h is a positive function. By the sum rule, limx→t h(x) =
l2 − l1 = l < 0, and so there is some positive function δ such that for each x ̸=t within δ(ϵ) of t, we
have |h(x)− l| < ϵ.

In particular, |l|/2 is the positive real number −l/2 and so each x ̸=t within δ(−l/2) of t satisfies
|h(x) − l| < −l/2. Since h(x) is within −l/2 of l, we have h(x) < l − l/2 = l/2 < 0, contradicting
the fact that h is a positive function.

How about if we bound a function from above and below and then squeeze?

Theorem 29 (Squeeze Theorem). Suppose we have functions f , g and h with f(x) ≤ h(x) ≤ g(x).
If limx→t f(x) = limx→t g(x) = l, then limx→t h(x) = l.

Challenge 24 Prove the squeeze theorem. [Hint: By the triangle inequality, |h(x) − l| ≤
|h(x)− f(x)|︸ ︷︷ ︸
≤g(x)−f(x)

+ |f(x)− l|︸ ︷︷ ︸
<ϵ

. Apply the triangle inequality to |g(x)− f(x)| = |g(x)− l + l − f(x)|.]

And that is it, you have successfully tackled the most difficult topic in calculus! As I mentioned
before, the idea of a limit is the culmination of nearly two centuries of investigation. It is truly a
difficult concept, but know you know what a limit is, and why we need it.

What closeness?

The idea of continuous functions is that close inputs map to close outputs. We were able to
formalize this idea with the definition of a limit. Yet, something is very off: if inputs are close
by δ(ϵ), then we check if their outputs are close by ϵ. But this is not what we have done: we are

15Hint: we want δ(ϵ) such that if 0 < |x− 0| < δ(ϵ), then |
√
x− 0| < ϵ. Absolute values can be discarded. Why?

16Hint: there is no need to get particularly creative with the strictly positive function δ.
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satisfied as long as the outputs are close by c · ϵ for some positive constant c. As an example, in
Challenge 24, you will have likely concluded that

|h(x)− l| ≤ |h(x)− f(x)|+ |f(x)− l| ≤ |g(x)− l|+ |l − f(x)|+ |f(x)− l| < ϵ+ ϵ+ ϵ = 3ϵ.

This is comparatively mild, for in the proof of product rule, we obtained a constant |l1|+ |l2|+ 1.
Imagine if |l1| = 10100! At this point, can we really say that the outputs are nearby?

Well yes! Even a gigantic number like 10100 can be scaled to a small number like 1 with some
choice of unit. Once again, something being large is a relative statement, rather than an absolute
one. This is why we need to consider all possible values of ϵ.

But this raises a conundrum, for “closeness” is also a relative statement, not an absolute one.
This suggests that chasing after “closeness” is perhaps not right.

Here is our current definition of continuity: a function f is continuous at t if for each ϵ > 0,
there is some δ(ϵ) > 0 such that for each x satisfying |x− t| < δ(ϵ), we have |f(x)− f(t)| < ϵ. It is
the same as the definition of a limit, except that since limx→t f(x) = f(t), we replaced the letter l
with f(t), and we allow x to take the value t by removing the restriction x ̸= t.

Challenge 25 Suppose function g is continuous at t and function f is continuous at g(t). Show
that their composition f ◦ g is continuous at t.

Recall from Challenge 23 that limx→t f(x) = l if and only if limx→t+ f(x) = limx→t− f(x) = l.
Since both are equivalent, we may take the statement limx→t+ f(x) = limx→t− f(x) = f(t)
as the definition of continuity. There are actually two statements: limx→t+ f(x) = f(t) and
limx→t− f(x) = f(t). Combining the two statements into one, we have: a function f is continuous
at t if for each ϵ1 > 0 and for each ϵ2 > 0, there is some δ1(ϵ1) > 0 and some δ2(ϵ2) > 0 such that for
each x ∈

(
t−δ1(ϵ1), t+δ2(ϵ2)

)
, we have f(x) ∈

(
f(t)−ϵ1, f(t)+ϵ1

)
and f(x) ∈

(
f(t)−ϵ2, f(t)+ϵ2

)
.

Observe that this unfamiliar definition of continuity no longer appears as a statement about
closeness. It is a statement about open intervals: the first part about ϵ1 > 0 and ϵ2 > 0 specifies an
interval Io in the output axis (y-axis) while the second part about δ1(ϵ1) > 0 and some δ2(ϵ2) > 0
specifies a corresponding interval Ii in the input axis (x-axis). In particular, each input in the
interval Ii must map to the interval Io. As a shorthand, we will write f(Ii) to denote the set of
outputs f(x) for x ∈ Ii. We will also write f(Ii) ⊂ Io to mean that the set f(Ii) is contained
within Io. We also say that f(Ii) ⊂ Io means that the set f(Ii) is a subset of Io.

Theorem 30. Suppose a function f satisfies the following: for each open interval Io containing
f(t), there is a corresponding open interval Ii containing t such that f(Ii) ⊂ Io. Then function f
is continuous at t.

Proof. We want to show that a function f satisfying the condition outlined is indeed continuous. Let
ϵ > 0. Then

(
f(t)−ϵ, f(t)+ϵ

)
is an interval containing f(t). Then there will be a corresponding open

interval Ii := (t− a, t+ b) containing t, where a and b are positive constants. Take δ(ϵ) = min(a, b)
and observe that I :=

(
t − δ(ϵ), t + δ(ϵ)

)
⊂ Ii. Therefore, f(I) ⊂ Io, in particular, for each

|x− t| < δ(ϵ), we have |f(x)− f(t)| < ϵ. We see that function f is indeed continuous.

This disposal of “closeness” and “distances” in favor of working with open sets leads to the
development of the field of topology. Quite a few difficult theorems in the rigorous study of calculus
(introductory analysis) are easy corollaries of some of the elementary but nevertheless abstract
results from topology. You are ready for a dive into either subject.
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Dynamics

5.1 Forces and Energy

Force

The two key concepts in calculus are that of derivatives and integrals. We were able to obtain
each concept by examining the ideas behind that of velocities and displacements, respectively. Now
that we have done some calculus, let us switch gears. Instead of taking the motion of objects, their
velocities and displacements as a given, let us examine what causes objects to have their velocities
and displacements.

To turn a stationary object into one in motion or vice versa, we will need to apply some sort of
force. Anyone who has gone up a ski piste using a ski lift knows that force is not proportional to
velocity, but acceleration. The resistance to acceleration given a force is known as mass, and so
F = ma, where F is the (total) force acting on our object of study, m is the mass of the object, and
a is acceleration of the object. This is Newton’s second law,1 and it is not to be taken as the
definition of force, but rather as a succinct summarization of observations and experiences. This
law is in fact incorrect, but a very good approximation in our ordinary lives to a more fundamental
law called Schrödinger’s equation from quantum mechanics. Notice that force has the dimension
Mass × Length × Time−2.

Because acceleration is the second derivative of position, Newton’s second law is an example of a
differential equation, which is an equation containing derivative(s) of unknown function(s). Many
physical systems are modeled using differential equations. In the context of classical mechanics,
we solve differential equations for the unknown function which models the dynamics of the system,
that is, how the system changes over time.

Work and energy

After studying velocities (derivatives) and displacements (integrals), two natural questions arise.
(1) How much total effort must we exert in order to get an object to attain a certain velocity? (2)
How much total effort must we exert in order to displace an object by a certain distance? For

1We have stated the law for objects constrained to motion along a line, as this is sufficient for our use.

67
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both questions, we will need the object to have moved, for we cannot calculate nonzero velocities
or displacements without any movement. Then, to calculate the total effort we exerted, we simply
accumulate the force we applied at each location the object was in, until our desired velocity or
displacement was attained. The work done W by a force F from position xi to xf on a line is the
definite integral

W :=

∫ xf

xi

F (x) dx.

The “total effort we exert” is quantified by work done, and as we might expect, involves an integral.
The dimension of work done is Force × Length, that is, Mass × Length2 × Time−2.

Let us tackle the first question: how much work must we do to get an object of mass m to
some velocity v? Immediately by dimensional analysis, we see that the answer must take the form
c ·mv2 for some constant c. We will assign the constant c by considering the simplest case. The
simplest case we can imagine is applying a constant force F to our object. Then the total work
done is F · (xf − xi), where xi is the initial position of our object and xf is the final position of
our object. We cannot assume that the object’s velocity during our hard work is constant, because
we want the velocity to change. However, the next simplest thing to assume is that the object
goes from a velocity of 0 and steadily increases to the velocity v. In other words, the object has
constant acceleration a. Then the displacement is the average velocity of the object v−0

2 multiplied
by the total time t we worked on the object. The constant acceleration a is given by the total gain
in velocity divided by the time it took to reach that velocity: v/t. Applying Newton’s second law
gives

work needed = F · (xf − xi) = ma ·
(
v − 0

2
· t
)

= m
v

t
·
(v
2
· t
)
=

1

2
mv2

and so the dimensionless constant we wanted was 1/2. The quantity 1
2mv2 is called the kinetic

energy of an object, and is denoted by the symbol K. The kinetic energy is often written slightly
differently using momentum. The (linear) momentum p of an object is given by mv. It tells us

how quickly we should get away from the object’s path. Using this notation, K = p2

2m .

Next we turn to the second question: how much work must we do to get an object from point
o to point r? Let us consider an example: suppose we want to lift a box from the floor straight
up. Then we must work against the force of gravity. The effort we need to exert will be easier on
the moon compared to the earth, so our answer will have to depend on the force we are working
against to lift up our box. Therefore,

work needed =

∫ r

o

−F (x) dx,

where we have a minus sign because we must apply force to counteract external forces. This
quantity is called the potential energy of an object moving along a line. The location o is called
the reference point or reference position. That the potential energy of an object depends on its
reference point might be unsettling, but it is really not. If we want to determine an elevation of a
location, we need to establish a reference point: say the ground level, or the sea level, etc, but this
does not worry us, as long as we are in agreement on what the reference point is. The potential
energy of an object is denoted by the symbol V .

There is however, one subtlety. The potential energy is the work we need to do to displace an
object from point o to point r. There are actually an infinite number of ways to do this. The
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normal way to lift a box from the ground to a height r is straight up. However, if we lifted the
box up halfway to a height of r/2, then returned the box to the ground, then brought the box up
to height r, the final displacement of the box is still r. A force F is conservative if a potential
energy can be defined unambiguously no matter how weird we decide to move the object. More
precisely, force F is conservative if the integral

∫ r

o
−F (x) dx is defined unambiguously. All forces

we will encounter in this book are conservative. An example of a force that is nonconservative is
frictional force. If we are moving an object against frictional force, then the work we need to do
will increase with the number of backtracks we take.

If force F is conservative so that V (x) :=
∫ x

o
−F (α) dα is unambiguous, then by the fundamental

theorem of calculus, dV
dx = −F (x)+F (o). Since we are free to choose our reference point, we choose

our reference point such that F (o) = 0. Once again, this is analogous to talking about an elevation
of a location. Technically we need to specify what our reference elevation is, but a natural reference
point is always implicitly used, and so we may talk about an elevation without ambiguity. Hence,
even though the elevation of a location technically does not make sense, we have no problem ignoring
this problem in practice. Similarly, even though it may not make sense to talk about the potential
energy of an object, we can do so in practice. By defining a point of reference o with F (o) = 0 for
a conservative force, we have

F (x) = −dV

dx
.

The mechanical energy, or total energy, of an object is defined to the sum of the object’s
kinetic and potential energy K + V . As long as we are only dealing with conservative forces, the
total energy of an object remains the same, and we say that energy is conserved.

Theorem 31 (Conservation of Energy). Suppose we have an object of mass m confined to move
along a line. If only conservative forces are at play, then mechanical energy is conserved.

Proof. The notation □̇ for a function □ means d
dt□. The symbol ẋ denotes the velocity of our

object (the rate of change of the position x of our object with respect to time). Multiplying ẋ into
both sides of Newton’s second law gives F (x)ẋ = mẍẋ. Since F is conservative, F (x) = −dV

dx and
so by the chain rule,

0 = mẍẋ+
dV (x)

dx
ẋ =

d

dt

(
m
ẋ

2

2

+ V (x)

)
=

d

dt
(K + V ) .

Notice that d
dtV (x) = dV

dx ẋ and not dV
dt , because x here is used to denote the position function.

Simple harmonic oscillator

The simplest nontrivial force we can imagine is a force F (x) := cx for some constant c. We can
(approximately) realize such a force in a spring and mass system, as shown in Figure 5.1, where
the longer we pull on the mass, the spring exerts a force proportional to the displacement of pull,
which wants to restore the mass back to the resting point. We choose the origin of the x-axis to be
the resting point of our mass. The assumptions are that we are not pulling too much to damage
the spring, and that no other forces (such as gravity, friction, air resistance, etc) are working on
our system. Such a system is called the simple harmonic oscillator, where the only force F is
defined by F : x 7→ −kx, in which k is the spring constant. This force is called Hooke’s law. The
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x
0

m

x
0

r

m

F

Figure 5.1: A mass and spring system at rest and displaced by r. (By Izaak Neutelings at tikz.net)

spring constant k is a property of the spring which dictates the strength of its pull. Notice the
minus sign: the spring is working against us, not for us, as we displace the attached mass.

We could apply Newton’s second law F = ma to get the equation ma = −kx and solve for x to
find out the oscillator’s motion. Instead, let us examine the system’s energy. Since F (0) = 0, we
set the reference point at the origin. Then at a displacement of r, the potential energy V of our
system is

V =

∫ r

o

−F (x) dx =

∫ r

0

kx dx =
1

2
kr2.

Therefore, the total energy E of our mass and spring system is given by

E := K + V =
p2

2m
+

1

2
kx2.

By conservation of energy, the quantity E is conserved for all time and is thus a constant.

A squared term (with some constant) plus a squared term (with other constant) equals another
constant. Where have we seen something like that before? To make this more explicit, let us divide

both sides by the nonzero constant E to get x2

2E/k + p2

2mE = 1.2 Setting a2 := 2E/k and b2 := 2mE

gives us an equation of an ellipse!
x2

a2
+

p2

b2
= 1

position

momentuma

−a

b−b

The figure above illustrates our ellipse with the x-axis representing position and the y-axis
representing momentum. When we represent a system in terms of its position and momentum, as
we are doing now, we are working in phase space.

Phase space

Let us try to get some intuition about phase space. Consider Figure 5.2, where an object has been
displaced from position xi to xf . We say that our object has undergone a (spatial) translation.

2We have used the fact that b
1/a

= ab.

tikz.net
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momentum

position
xi xf

p

Figure 5.2: Momentum p is applied to an object, displacing it from xi to xf .

What caused the the object to undergo spatial translation? Momentum p was applied to our object.
We say that momentum generates translation.

Now let us add time. The time axis will work just the same as it did in calculus: there is no
preferred sense of direction (just like left or right are equally valid), we can “move” through it just
like any spatial dimension. Suppose we added energy to our oscillator and we graphed the system
in phase space, as in the right of Figure 5.3. What is going on there?

momentum

position

time

momentum

position

time

Figure 5.3: The phase space of an oscillator and another with energy being added.

Let us review the simpler case of momentum being added to the object (Figure 5.2). Initially,
the object is stationary, with no motion, at position xi. Since position xi is simply a label, we
are free to assign any numerical value: it could be the origin, or not. Now we apply momentum
to the object, and the object is translated to position xf . Once again, the position xf is simply
a label, we are free to assign any numerical value. Suppose we define the origin to be position
xf . Then xf = 0. However, xi can no longer be the origin. It can be some positive number or
negative number depending on our choice of left/right, but it cannot be zero. We therefore conclude
that spatial translation has occurred, and it was caused by momentum. We say that momentum
generates translation.

Now we return to the case of adding energy to our oscillator (Figure 5.3). Because time is
simply a coordinate (like position), we can assign any time to be the origin. In particular, by
energy conservation, as long as no energy is added or removed, the diagram in our phase space will
continue to be the same. So we could assign the time of zero to any of them and no one will be
the wiser (left diagram in Figure 5.3). Now suppose we add in some energy. Time is an axis like
any other and we can define the origin to be anywhere we want. So suppose we define the time



72 CHAPTER 5. DYNAMICS

to be 0 right after energy is added to the oscillator. Now the oscillator in the previous state with
less energy has a different diagram from the new one and cannot be said to be at time zero: it
could be positive or negative depending on our choice of direction, but it is not zero. We see that
time translation has occurred, and it was caused by energy. We say that energy generates time
translation.

In the context of phase space, we call the total energy of a system the Hamiltonian and denote

it by the symbol H. Thus H(x, p) := p2

2m + V (x) for the potential energy V of the system.

5.2 Vectors and Matrices

Vectors

We now return to the very beginning and ask ourselves again, what is 1 + 1? The answer is
still 2, and once again, we will insist that these numbers mean something. To each number 1, we
attach the meaning of 1 apple and 1 orange, respectively. We now ask again, what is 1 apple plus
1 orange?

Our position at the beginning of the book was that this question involves quantities that cannot
be matched, and therefore, it is a sum which cannot be resolved. This led to the idea of dimensional
analysis. Yet there is another answer that is just as reasonable. 1 apple plus 1 orange is 2 fruits!
Let us see where this takes us.

We begin with most important question: why? Why are we trying to sum different fruits? An
obvious application is to make a fruit salad or a fruit juice or a platter of fruits. Let us suppose we
want to create a fruit salad.

Although it is convenient to clump things together under a bigger label (in this case, “fruits”),
we have the additional complexity of having to keeping track of things. For example, 1 apple plus 1
orange is 2 fruits, but so is 1 tomato and 1 olive. It will be necessary to distinguish between the pile
of 1 apple and 1 orange versus the pile of 1 tomato and 1 olive, because they are not interchangeable
when making a fruit salad.

For simplicity, let us assume there are only three different types of fruits: apples, oranges, and

tomatoes. We can express the sum 1 apple + 1 orange by the list

1
1
0

, where we have established

the convention that the first (or top) of our list is the number of apples, the second (or middle) of
our list is the number of oranges, and the third (or bottom) of our list is the number of tomatoes. To
create a recipe, we need some standardized form of units: grams, pounds, cups, etc. So depending
on the unit we choose, the list will look different. But even if the numbers look different with
different units, the fruit salad that we have in mind will still be the same. We will call lists of
numbers by vectors, and the dimension of the vector is the length of the list. In our case, we are
dealing with vectors of dimension 3, because we only consider three types of fruits. Notice that the
object (in this case, a fruit salad) is represented as a vector, but the representation is not unique
because we can always change the units. To emphasize that objects are unbound to a particular
vector, we will write them using a special symbol. For example, a fruit salad named A made with

100 grams of apples and 20 grams of oranges could be represented as the vector

100
20
0

. But we
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will refer to the fruit salad itself by the symbol |A⟩.
The next thing to do is to try and furnish an arithmetic. Now, it is straightforward to add and

subtract using vectors. For example, if we have a fruit salad |A⟩ and another fruit salad |B⟩, then
we may add them together to get a bigger fruit salad by representing each as a vector in the same
units, and adding each up. For example, if |A⟩ has 100 grams of apples and |B⟩ has 20 grams of
oranges, then

A+B =

100
0
0

+

 0
20
0

 =

100
20
0

 .

Subtraction works the same way, but the plus sign becomes a minus sign. How about multiplication
and division? Well, it makes little sense to multiply two fruit salads, or to divide a fruit salad by
another, so we will not attempt to define a multiplication of vectors.3 However, it makes perfect
sense to double a portion of fruit salad or halve a portion of fruit salad. The scalar multiplication

of a scalar c on a vector D =

d1
d2
d3

, written cD is defined by

cD :=

c · d1
c · d2
c · d3

 .

In fact, scalar multiplication could mean a change in portion, but also a change of units. For
example, to convert a vector whose unit in each entry is a gram (for standardization, we insist that
all entries in a vector share the same unit), then to convert it into a vector whose unit in each entry
is a kilogram, we do a scalar multiplication by 1/1000.

Linearity

Much like we can calculate the displacement of an object from time ti to tf by applying integra-
tion to a function, or calculate the velocity of an object by applying differentiation to a function,
we can change the units of the entries in a vector from one to another by applying a change of
units. Let us denote the last operation by the symbol o (much like a derivatives are indicated by ′).
With respect to the two arithmetic operations we know, vector addition and scalar multiplication
by scalar c (a real number will sometimes be referred to as a scalar), the following holds:

(A+B)o = Ao +Bo and (cA)o = cAo. (5.1)

The first simply reflects the fact that combining fruit salads and then changing units of measurement
gives us the same result as changing units after adding two fruit salads. The second comes from the
fact that halving a portion and then changing units is the same as changing units and then halving
a portion.

We have seen this before. For a real number c and differentiable functions f and g, we have

(f + g)′ = f ′ + g′, and (cf)′ = cf ′.

3Nevertheless, we will revisit this matter in a restricted setting in Section 5.3.
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Ditto for integration of bounded continuous functions f and g defined on an interval [ti, tf ]:∫ tf

ti

[f(x) + g(x)] dx =

∫ tf

ti

f(x) dx+

∫ tf

ti

g(x) dx, and

∫ tf

ti

cf(x) dx = c

∫ tf

ti

f(x) dx.

Since this pattern has already occurred three times with respect to the most important operations,
we will single this out and call this property linearity. Thus an operation that satisfies the two
conditions in 5.1 is said to be linear.

Matrices

We began with fruits and salads, yet unexpectedly returned to calculus. How about we consider
an example from calculus? One of the simplest nontrivial thing we can do with calculus is to
calculate derivatives of polynomials. Let us try representing polynomials using vectors. The catch
is that, like capping the number of fruits, we will need to cap the degree of the polynomials we are
considering. Let us fix the maximum degree at 2 and consider polynomials of the form ax2+ bx+ c.

We may write such a polynomial using vector notation as

a
b
c

. The derivative is the vector

 0
2a
b

,

as you can verify using the differentiation rules.

But which rules in which order? By linearity of the derivative operation,a
b
c

′

=

a
0
0

′

+

0
b
0

′

+

0
0
c

′

= a

1
0
0

′

+ b

0
1
0

′

+ c

0
0
1

′

(5.2)

which has expressed our need to use the sum rule (f+g)′ = f ′+g′ and the product rule (cf) = cf ′.
By the power rule, 1

0
0

′

=

0
2
0

 ,

0
1
0

′

=

0
0
1

 ,

0
0
1

′

=

0
0
0

 . (5.3)

Plugging these values back into Equation 5.2, we havea
b
c

′

= a

1
0
0

′

+ b

0
1
0

′

+ c

0
0
1

′

= a

0
2
0

+ b

0
0
1

+ c

0
0
0

 =

 0
2a
b

 .

That was a long roundabout way of doing something we knew from the very beginning. Or
is it? Notice how once we have the values of derivatives at each entry calculated upfront, as in
Equations 5.3, all that is needed is just scalar multiplication and vector addition. No additional
calculus needed!

Since our strategy from the beginning was to do as little calculus as possible and replace it with
as much arithmetic as possible, this is very good news! Let us systemize this procedure.

Let Rn, called the n dimensional Euclidean space, denote the set of vectors of dimension
n with real entries, equipped with the vector addition and scalar multiplication operations. The
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(ordered) standard basis of the n dimensional Euclidean space are the n vectors e1, e2, . . . , en
defined by the following, and listed in that order.

e1 =


1
0
0
...

 , e2 =


0
1
0
...

 , · · · , en =


0
...
0
1


To calculate the derivative of a polynomial of degree n− 1, all we need to do is cache the result

of the power rule applied to each polynomial represented by the standard basis. After that, all we
need to do is scalar multiplication and vector addition. By the power rule,

e′1 =


0

n− 1
0
...

 , e′2 =


0
0

n− 2
...

 , · · · , e′n =


0
...
0
0

 .

There is no reason we need to keep track of n vectors separately. How about we squash them all
together into one object, as shown below? We will call this concatenation of vectors.

D :=


0 0 · · · 0

n− 1 0 · · · 0
0 n− 2 · · · 0
...

...
. . .

...
0 0 · · · 0

 (5.4)

Our new procedure for taking the derivative of a polynomial of degree at most n−1 is as follows.
Suppose we have vectors v1, v2, . . . , vn and scalars c1, c2, . . . , cn. A linear combination of vectors
v1, . . . , vn with coefficients c1, c2, . . . cn is the expression

c1v1 + c2v2 + · · ·+ cnvn.

For each polynomial p = a1x
n−1 + a2x

n−2 + · · · + an, we turn its vector representation v into a
linear combination

v =


a1
a2
...
an

 = a1e1 + a2e2 + · · · anen.

Then the derivative can be taken by looking at each column of the matrix D in 5.4:

v′ = a1e
′
1+a2e

′
2+· · · ane′n = a1 column 1 of D+a2 column 2 of D+· · ·+an column n of D. (5.5)

Because D contains all the information about derivatives of polynomials we need, it is our familiar
derivative operator, but represented as a matrix. A matrix is a rectangular table of numbers.
A matrix with m rows and n columns is said to have dimension m × n. Notice that unlike a
vector which records static information about an object, a matrix is dynamic, taking a vector and
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transforming it into another. In this case, the matrix D takes in a polynomial of degree at most
n− 1 and transform it to another polynomial (its derivative).

Let us try and apply what we have discovered to fruits. The key operator here is the change of
units. Suppose we were measuring fruits in grams and we wished to measure instead in kilograms.
Using the notation o to signify the change of units, we have

eo1 =

1/1000
0
0

 , eo2 =

 0
1/1000

0

 , eo3 =

 0
0

1/1000

 .

Then the change of unit can be represented as a matrix

C :=

1/1000 0 0
0 1/1000 0
0 0 1/1000

 .

To do a change of units for a fruit salad recipe |r⟩, we take its vector representation r =

r1
r2
r3

,

turn it into a linear combination of standard basis vectors, then apply the rule

ro = r1 column 1 of C + r2 column 2 of C + r3 column 3 of C. (5.6)

Since it gets rather tedious to right out the expressions in Equations 5.5 and Equations 5.6, we will
use the shorthand Dv and Cr, respectively.

Thus if we have a matrix A and a vector v defined by

A :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 and v :=


v1
v2
...
vn

 ,

then the expression Av is the vector defined by the sum

Av := v1


a11
a21
...

am1

+ v2


a12
a22
...

am2

+ · · ·+ vn


a1n
a2n
...

amn

 .

Computing the vector additions above, we have

Av :=


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · · amnvn

 . (5.7)

This looks a little scary, but do not fear, for we are simply restating what we have been doing with
derivatives of polynomials and changing units of fruits.
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Partial derivatives

We interrupt this program to bring you some calculus! Suppose we have a function f that takes
as inputs vectors of dimension n and outputs a real number. We can think of function f as taking
n inputs, and a natural question to ask is what its rate of change is with respect to one of the n
inputs.

In order to do this for the kth input, we start from f(t) and vary t by αek. If there is a number
∂kf(t) such that the following equation holds:

f(t+ αek) = f(t) + ∂kf(t)α+ o(α)

then we know that the rate of change of function f at t is given by ∂kf(t). The number ∂kf(t) is
called the partial derivative of f at t with respect to the kth variable.

Back in Section 3.4 when we were showing that log(xy) = log x + log y, we defined a function
g : x 7→ log(xy)− log x. The function g is a function of a single variable because the quantity y was
treated as a constant. Taking the derivative of g gave us

g′(x) =
1

xy

d

dx
(xy)− 1

x
=

y

xy
− 1

x
= 0.

We could have achieved the same thing by defining f as a function of two variables x and y defined
by f(x, y) := log(xy)− log x and then taking the partial derivative with respect to x to get:4

∂xf(x, y) =
1

xy
∂x(xy)−

1

x
=

y

xy
− 1

x
= 0.

The reason is the same as why (cx)′ = cx′ whenever c is a fixed number. In the definition of a
partial derivative, the only thing we vary is the kth variable by adding αek, while all other inputs
are fixed numbers. For example, if h(x, y) = 3xy + y2 and we want to know ∂1h(2, 5), then y
is no longer a variable: it is the constant 5. This means that partial derivatives obey the same
differentiation rules as our ordinary derivatives.5

A popular notation that we will use is that if we have a function f which has inputs denoted by
the variables ♣,♠, then we will write ∂f

∂♣ and ∂f
∂♠ to denote the partial derivatives with respect to ♣

and ♠, respectively. If the function f is twice partial differentiable with respect to the ♣ variable,

then we write ∂2f
∂♣2 .

If f is a function of n variables, then the gradient of f at t, denoted by ∇f(t), is defined to be

∇f(t) :=

∂1f(t)
...

∂nf(t)

 .

There is also a Laplacian operator, denoted by the symbol ∇2 or ∆, defined by

∇2f :=

n∑
i=1

∂if.

4The notation ∂x is used in place of ∂1 because we know that x is the first variable.
5Feel free to check this. It amounts to defining functions of one variable and then applying the usual differentiation

rules. The process is the same as finding ∂1h(2, 5) for h(x, y) = 3xy + y2 by defining h̃(x) = 3x · 5 + 52 to obtain a
function of one variable, then taking the derivative h̃′ and plugging in 2 for x to get ∂1h(2, 5) = h′(2) = 15.
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Matrix multiplication

Recall that units do not support chaining, but functions do. Vectors do not support chaining,
but we can chain matrices together, as in (A ◦ B)v := A(Bv). We will use the shorthand ABv to
mean the same thing. Looking at the ghastly expression 5.7, it may seem like we are asking for
trouble. But once again, matrices are nothing scary. All they do is tell us how to transform vectors.

We got our first matrix D from Equation 5.4 by concatenating (squashing) vectors together.

e′1 =


0

n− 1
0
...

 , e′2 =


0
0

n− 2
...

 , · · · , e′n =


0
...
0
0

 =⇒ D :=


0 0 · · · 0

n− 1 0 · · · 0
0 n− 2 · · · 0
...

...
. . .

...
0 0 · · · 0


Recalling this fact, we can study the chain AB independently of the input vector v just as we can
study f ◦g independently from its input t. Since a matrix exists to transform vectors, the matrix A
in the chain AB is looking for a vector. But matrix B is simply a concatenation of vectors, just like
our matrix D was a concatenation of vectors. In particular, the jth column of a matrix B, denoted
by the notation Bj , is a vector, which is exactly what A is looking for! Taking our derivative matrix
D as an example,

D1 =


0

n− 1
0
...

 := e′1, · · · . Dn =


0
...
0
0

 := e′n

So we simply repeat what we have done and apply B to each of the columns of A, then concatenate
them together.

Let us see this in action for our polynomial derivative matrix D. We are allowed to take
derivatives as many times as we wish with polynomials. So if we want to take a derivative a
second time, then we simply apply the matrix D to each of D1, D2, . . . , Dn using the fact that
D(Di) := D(e′i) = (ei)

′′. To obtain our matrix for taking derivatives twice, which we will refer to
as D2, we simply do what we did before: concatenate the vectors D(Di) together. To recap, the
operation D2 to take derivatives twice is given by the matrix whose kth column is given by the
vector D(Dk), or in matrix form:

D2 := DD =

 | | · · · |
D(D1) D(D2) · · · D(Dn)
| | · · · |

 .

Challenge 26

(a) Find the matrix D for differentiating a polynomial of degree at most four (polynomials of the
form ax3 + bx2 + cx+ d). Check your answer agrees with our derivative matrix given above.

(b) Find the matrix D2 two different ways. First, by calculating (ax3+bx2+cx+d)′′ and caching
the rule for transforming standard basis vectors e1, e2, e3, and e4 as one object through con-
catenation. Second, calculate the vectors D(D1), D(D2), D(D3), and D(D4), then concate-
nate the four vectors as one object. Verify that your results from both methods are equal.
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Let us review this prescription, but generalized beyond derivative matrices. Suppose B is a
matrix that takes in a vector v of dimension n and produces a vector Bv of dimension m, where n
and m are positive integers. We want to feed this result into a second matrix A, which takes in a
vector of dimension m and produces a vector of positive integer dimension l. Then their product
matrix C := AB takes in a vector of dimension n and returns a vector of dimension l. This means
that to figure out the product matrix C, we need l piece of information: how C transforms each of
the vectors of the standard basis e1, e2, . . . , el. Once we have those information, we can combine
them together as one object:

C := AB =

 | | · · · |
Ce1 Ce2 · · · Cen
| | · · · |

 .

Using the fact that C := AB and that Bi := Bei, we have the following.

C =

 | | · · · |
Ce1 Ce2 · · · Cen
| | · · · |

 =

 | | · · · |
ABe1 ABe2 · · · ABen
| | · · · |

 =

 | | · · · |
AB1 AB2 · · · ABn

| | · · · |


We restate what we have found.

Definition 32. Let A be a matrix of dimension l×m and B be a matrix of dimension m×n. The
matrix multiplication AB of the two matrices A and B results in a matrix C of dimension l× n
defined by Ck := ABk.

Notice that a matrix cannot transform just any old vector, and so there is some restriction in
our ability to do matrix multiplication. For example, if the vector v has dimension 5, but matrix
B has dimension 1 × 1, then the matrix B cannot transform the vector v. In order for the chain
ABv to work, matrix A must have dimension ♣×m, where ♣ is any positive integer and m is the
dimension of Bv.6 To recap, we can chain a matrix A of dimension ♣ × m with a matrix B of
dimension m×♠ to get the chain AB, but we may not form the chain BA unless ♣ = ♠.

What about chaining three or more matrices? Consider the chain ABC for matrices A,B, and
C (with the appropriate dimensions). There is potentially some ambiguity, for ABC could mean
the matrix multiplication (AB)C or A(BC). Well, a matrix is nothing more than a way to cache
the rules for transforming vectors. Hence matrices are simply a concrete way of writing down
a particular class of functions (linear functions). Recall that function composition is associative.
Thus the results (f ◦ g) ◦ h(x) and f ◦ (g ◦ h)(x) are the same. If we represent a linear function
f by the matrix A, a linear function g by the matrix B, and a linear function h by the matrix C,
then for each vector v with the appropriate dimension, (AB)Cv and A(BCv) will give the same
result. Therefore, the expression ABC is unambiguous, and matrix multiplication is associative:
(AB)C = A(BC).

There is a distinguished matrix I, defined by Ik := ek. That is,

I :=


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1

 .

6Recall that a matrix has dimension ♣× n if the matrix has ♣ rows and n columns.
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The rule that matrix I uses to transform vectors is: transform a standard basis vector ei into ei.
Hence for each vector v, the vector Iv = v. By the definition of matrix multiplication, for each
matrix M , the matrix multiplications IM = MI = M . Because the matrix I does nothing, it is
called the identity matrix. We will also denote it by 1, because the number 1 is the distinguished
real number such that for each number c, 1 · c = c · 1 = c.

There is also a rather silly matrix called the zero matrix, which we will denote 0, defined as
the matrix with zero everywhere:

0 :=

0 · · · 0
...

. . .
...

0 · · · 0

 .

For each matrix, M , we have M0 = 0M = 0. Once again, this is in analogy to the real number 0,
with the property 0 · c = c · 0 = 0 for each real number c.

We can multiply a real number by another real number. We can also multiply a real number
to a matrix. For a real number c and matrix M , the matrix cM is the matrix whose entries have
each been multiplied by c. For example, in the context of matrices, −1 denotes the identity matrix
1 multiplied by the real number −1:

−1 :=


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 .

Challenge 27 Denoting a matrix I by the number 1 and the zero matrix by the number 0 is our
first step in accepting matrices as numbers we can do arithmetic with (just like we did for units
and functions). However, matrices and matrix multiplication exhibit some odd behavior that we
have not seen with real numbers. This makes matrices more exciting!

(a) As a warm up, use the definition of matrix multiplication and the matrix transformation rule

5.7 to show that if A :=

(
a b
c d

)
and B :=

(
w x
y z

)
, then

AB =

(
aw + by ax+ bz
cw + dy cx+ dz

)
.

(b) Let A =

(
0 1
1 0

)
and B =

(
1 1
0 1

)
. Show that AB ̸= BA. We say that matrix multiplication

is not commutative, because changing the order of multiplication may change the result.

(c) Let ϵ :=

(
0 1
0 0

)
. Show that ϵ2 := ϵϵ = 0, even though ϵ ̸= 0. This justifies the mysterious

dual numbers. It is perfectly possible to have non-zero things that square to a zero.

(d) Let A :=

(
0 1
−1 0

)
and B :=

(
0 −1
1 0

)
. Show that A2 := AA = −1 and B2 := BB = −1.

The German theoretical physicist Werner Heisenberg was one of the founders of the field of
quantum theory. He published his Nobel Prize winning paper on matrix mechanics at the age of 24,
laying the foundation of quantum mechanics. It which would make obsolete “old quantum theory”,
which were heuristics used to attempt to explain quantum mechanical phenomena. He would later
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receive the Nobel Prize in Physics at the age of 31 “for the creation of quantum mechanics”.7 You
now know more about matrices than Heisenberg did when he was creating his matrix formulation of
quantum mechanics! Matrix theory was considered at the time to be abstract mathematics (matrix
multiplication was only first written down in the 19th Century). Congratulations on making it this
far!

5.3 The Complex Field

An algebra

We have so far made zero attempt to multiply two vectors, even though vector multiplication
seems like a natural thing to try and figure out. Rather than engaging in excessive generality, we
will explore a nontrivial yet simple setting: multiplying two vectors, each with two real entries.8 So
here is the plan: we have two vectors v and w, and we want to create their product u. If u and v
were basis vectors, it would make sense for us to write this out as a linear combination:

u = v · w = av + bw

where a, b are constants. So let us consider the multiplication of basis vectors.

Everything is happening in the simple setting of two entries and so two basis vectors is sufficient
to describe all our vectors involved, including products. Since all our product vectors can be
expressed as a linear combination of two basis vectors, let us try to identify a good candidate for
these two basis vectors, which we will call α and β. First, let us assign a vector to α, so we have
something to work with. The simplest thing would be to consider the vector α as the number
zero, but with our intuition from real numbers, we would expect everything multiplied to a zero to
become zero. This is far too trivial: for each vector v, we have α · v = α.9 The next simplest is to
consider the vector α as the number 1, so that α · v = v ·α = v. Now what about the vector β? Let
us write down what we have figured out so far:

α · α = α, 10 α · β = β · α = β, 11 β · β = aα+ bβ

where a and b are scalar constants (and not vectors).

What do we do next? There is no more information to go by. The only knob we have at our
disposal is our freedom in how we define β. So let’s see what happens if we pull apart the vector α
out from β. Define β̄ := β − cα, where c is a real number.12 Then

β̄ · β̄ = (β − cα) · (β − cα) = β · β − 2cα · β + c2α · α.

Using our known information β · β := aα+ bβ, α · α = α, α · β = β and simplifying, we have

β̄ · β̄ = (a+ c2)α+ (b− 2c)β.

7Obviously no one created quantum phenomena, but someone had to work out the theory of quantum mechanics.
8We already know how to multiply two vectors, each with one real entry. Two entries is the next simplest.
9It turns out that such a simple structure is the foundation of some very applicable mathematics, but we will

not deal with this in this book.
10This is the analogue of 1 · 1 = 1.
11This is the analogue of 1 · β = β · 1 = β.
12Since we do not know a priori how much α we need to pick out of β, we will quantify our ignorance with this

new constant c.
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Now check this out! If 2c := b, then β̄ · β̄ = dα, for some constant d. The choice of basis vector
β̄ := β − (b/2)α is superior, so let us forget that β existed by replacing it with β̄ to get

β̄ · β̄ = (a+ [b/2]2)α+ (b− 2c)[β − (b/2)α] = (a+ b2/4)α+ (b− 2c)β̄ = (a+ b2/4)α.

What we have successfully done is to turn our abstract problem of trying to multiply two vectors
into something that’s like multiplying two real numbers: α corresponds to the real number 1 and
β̄2 corresponds to the real number d := a+ b2/4. There are three possibilities for the real number
d: (i) d = 0 or (ii) d > 0 or (iii) d < 0. In actuality, because we can choose any units to scale things
as we wish, there are really only three unique values we need to contemplate. Either d is 0, 1, or
−1. In other words, we have β̄2 = 0 or β̄2 = 1 or β̄2 = −1.

Now this is very interesting, we have already seen the case of β̄2 = 0 in our encounter with dual
numbers. The case of β̄2 = 1 is not super interesting because α2 = 1 as well. But what’s this?
The case of β̄2 = −1, now that’s something! Where have we seen this before? We have seen such

a behavior in Challenge 27 with the matrices

(
0 1
−1 0

)
and

(
0 −1
1 0

)
, which both square to the

matrix −1. Since we have to make a choice, we will take

α :=

(
1 0
0 1

)
and β̄ :=

(
0 1
−1 0

)
and we will call the matrix

(
0 −1
1 0

)
the conjugate of β̄.

So how did we go from starting with an attempt to multiply two vectors and end up with
matrices? Indeed, the “vectors” α and β̄ look like matrices, each with four entries, and they do not
look like “vectors”. To see that these are also vectors with two entries, but in a different notation,
consider the linear combination of the basis vectors:

xα+ yβ̄ = x

(
1 0
0 1

)
+ y

(
0 1
−1 0

)
=

(
x y
−y x

)
.

The “matrices” we are dealing with only have two knobs to change about, and so they can be
described by vectors of dimension two. In fact, how about we make this explicit right now?

Complex numbers

We will now treat the matrices α and β̄ as numbers. There is no problem thinking of α as the
real number 1, as we have done so before, but the catch is that we have to remember that β̄ squares
to −1. Because of this curious property, we call β̄ the imaginary number and denote it with the
symbol i. Of course, there is nothing more imaginary about i compared to the real numbers, but
this is the nomenclature.

Thus the linear combination xα+yβ̄ for real numbers x and y will now be written as the number
x+ yi, and we call the set of such numbers the complex numbers. The set of complex numbers
is denoted by the symbol C. We have a new number system, so let us explore its arithmetic.

We may think of a complex number x + yi as a vector of dimension two (or perhaps as a
fruit salad where we accept only two different types of fruits). Thus to add two complex numbers
z1 := a+ bi and z2 := c+ di, where a, b, c, and d are real numbers, we use vector addition:(

a
b

)
+

(
c
d

)
=

(
a+ c
b+ d

)
.
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Hence the sum of our two complex numbers z1, z2 is given by the complex number z1 + z2 :=
(a+ c) + (b+ d)i. In fact, since, a complex number can also be represented as a matrix, it should
be possible to write the above as(

a b
−b a

)
+

(
c d
−d c

)
=

(
a+ c b+ d
−[b+ d] a+ c

)
.

To ensure this, matrix addition should be defined for matrix with matching dimensions as follows.
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

+


b11 b12 · · · b1n
a21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


Ok, so we know how to add complex numbers. Subtracting a complex number from a complex

number is just as simple: z1−z2 := (a−c)+(b−d)i. How about multiplying two complex numbers?
Here it will be useful to recall the definition of matrix multiplication. We will use the shortcut from

Challenge 27: if A :=

(
a b
c d

)
and B :=

(
w x
y z

)
, then

AB =

(
aw + by ax+ bz
cw + dy cx+ dz

)
.

Therefore, if z1 := a + bi and z2 := c + di are complex numbers, then their product z1z2 can be
represented in matrix form by(

a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc
−bd− ad −bd+ ac

)
=

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
.

Therefore, the product of two complex numbers z1 and z2 is given by the complex number

z1z2 := (ac− bd) + (ad+ bc)i.

Addition of complex numbers was quite simple, but multiplication looks complicated. Yet there
is some method to the madness. Let us turn off the pesky i term by setting b = d = 0 in our complex
numbers z1 := a+bi and z2 := c+di. Then addition of two complex numbers is z1+z2 = (a+b)+0i
and multiplication of two complex numbers is z1z2 = ac + 0i. We have been able to recover the
familiar addition and multiplication of real numbers! To amplify the fact that something familiar
is still with us, we use the following definition.

If z := x+ yi is a complex number for real numbers x and y, then Re z := x is called the real
part of z and Im z := y is called the imaginary part of z.

We can divide real numbers. Can we divide a complex number by another complex number?

Challenge 28 If A is a matrix with dimension n × n, then matrix A is said to be invertible if
there is a matrix B such that AB = BA = 1.13 The matrix B is called the inverse matrix of A,
and is denoted by the symbol A−1.14

13For the two matrix multiplications to work, we see that if B exists, it must have dimension n× n. A matrix is
called a square matrix it has the same number of rows and columns. We see that non square matrices do not have
matrix inverses (there are however, pseudo inverses).

14For this Challenge, it may be helpful to recall that for real numbers a and b, with nonzero a, we have b
1/a

= ab.
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(a) As a warmup, show that if B is a matrix inverse of A, then A is a matrix inverse of B. Use the
fact that matrix multiplication is associative and B = 1B = B1 to show that matrix inverses
are unique by supposing B and C are matrix inverses of A and concluding that B = C.15

(b) Let A :=

(
a b
c d

)
and B :=

(
w x
y z

)
so that AB =

(
aw + by ax+ bz
cw + dy cx+ dz

)
. For B to be an

inverse of A, it is necessary (but not sufficient) that AB = 1, in particular:

aw + by = 1, ax+ bz = 0, cw + dy = 0, cx+ dz = 1.

The values of a, b, c, and d are constants and we wish to find the values of the real numbers
w, x, y, and z so that the above holds. Find the values w, x, y, z.16

(c) Show that your answer from part (b) can be written as w = d/(ad − bc), x = −b/(ad − bc),
y = −c/(ad− bc), and z = a/(ad− bc).

(d) Show that if ad − bc ̸= 0, then BA = 1, where the entries of matrix B are as you found in
part (b) or part (c). Conclude that the matrix A with dimension 2 × 2 has an inverse when
ad− bc ̸= 0 with

A−1 :=
1

detA

(
d −b
−c a

)
where detA := ad−bc is the determinant of a matrix A of dimension 2×2. If a determinant
is nonzero, the matrix A is invertible. If B =

(
b
)
is a 1×1 matrix, then matrix B is invertible

if it is not the zero matrix, and so detB := b and its inverse matrix is given by B−1 :=
(
1
b

)
.

(e) Let z := x + yi be a complex number where x and y are real numbers. Define 1/z (the
multiplicative inverse of z) to be the complex number such that z · (1/z) = (1/z) · z = 1.
By part (a), this number is unique. Find a formula for 1/z. When does a complex number z
not have a multiplicative inverse?

(f) Verify that your answer from part (e) matches our intuition from real numbers by setting
y := 0 and checking that it is the same as that of real numbers.

(g) Define the division of a complex number z1 := a+ bi by another complex number z2 := c+ di
by the product z1 · (1/z2), whenever (1/z2) exists. What is Re(z1/z2) and Im(z1/z2)? Check
that it matches our intuition from real numbers by setting b := 0 and d := 0.

From your work in Challenge 28, we know that we can divide complex numbers by other nonzero
complex numbers,17 just like real numbers! In fact, we see that real numbers are a special case
of complex numbers where the imaginary part is 0. A number system where we can do all the
arithmetic operations (addition, subtraction, multiplication, division by nonzero numbers) as with
real numbers, is called a field. Because we can do all the arithmetic operations with complex
numbers just as we do with the real numbers, the complex numbers with its arithmetic operations
form a field called the complex field. The numbers in a field are called scalars, and since we
upgrade our number system from real numbers to the complex numbers, by a scalar, we mean a
complex number.

15Hint: B = 1B = (CA)B.
16Hint: the second equation tells us x = −bz/a. Plugging this into the fourth equation gives us a formula for z

in terms of the constants a, b, c, and d. Then you also know the formula for x, and are halfway done!
17A nonzero complex number is a complex number with at least one nonzero real part or imaginary part.
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Further concepts

The sum of the squares of the real part and imaginary part of a complex number appeared
numerous times in Challenge 28, and so it is useful to isolate this concept. For a complex number
z := x+ yi, the absolute value of z, written |z|, is defined as the number

√
x2 + y2.

Observe that because x and y are real numbers, the absolute value of a complex number is
always a real number. Furthermore, if y = 0, then this matches our definition of an absolute value
of a real number. In fact, the only complex number with absolute value 0 is the real number 0.

There is an alternative way of calculating the absolute value of a complex number z. The
complex conjugate of a complex number z := x+ yi, denoted by the symbol z∗, is the complex
number x − yi. That is, the complex conjugate of a complex number z is the same number, with
Im z switching signs. Using the formula for the products of complex numbers, we obtain:

√
zz∗ =

√
(z∗)z = |z|.

A real number x has no imaginary part, and so x∗ = x.

By the definition of an absolute value for a complex number z, we have |z|2 = (Re z)2+(Im z)2.
In particular, if |z| = 1, then we have the equation (Re z)2 + (Im z)2 = 1. This is an equation we
have seen several times already! It is the equation of a unit circle.

Real Axis

Imaginary Axis

1

−1

1−1

Figure 5.4: The set of complex numbers z with |z| = 1 form a unit circle (the blue circle).

A diagram of the plane, where the x-axis represents the values of the real part of a complex
number, and the y-axis represents the values of the imaginary part of a complex number, is called
an Argand diagram.18 Figure 5.4 is an example of an Argand diagram.

Real Axis

Imaginary Axis

y

−y
x

z

z∗

Figure 5.5: A complex number z := x+ yi and its complex conjugate z∗ = x− yi.

18The identification of complex numbers as geometric objects (points on a plane) was apparently done first in
1799 by the mathematician Caspar Wessel.



86 CHAPTER 5. DYNAMICS

From Figure 5.5, we see that geometrically the conjugation operation on a complex number is
a reflection across the real axis. Recall that when we were creating the complex numbers, there

were two matrices that squared to −1, the matrices

(
0 1
−1 0

)
and

(
0 −1
1 0

)
. We thus had to make

a choice on which matrix to assign to the imaginary number i. Geometrically, the choice was on
deciding which side of the imaginary axis is up and which is down. To see this, if we had chosen the
second matrix as the imaginary number i, all our conventions would have the opposite sign in the
imaginary axis of the Argand diagram. At this point, we are comfortable with making such choices
from calculus, so we see that there was no loss in generality by making one choice over the other.

Challenge 29 Let z and z′ be complex numbers.

(a) Show that

Re z =
1

2
(z + z∗), Im z =

1

2i
(z − z∗).

(b) Show that the division of complex numbers can be done by a division by a real number:

z′/z = z′
(

z∗

zz∗

)
.

Challenge 30

(a) Identify the complex number w := 3− 4i on an Argand diagram and calculate |w|.
(b) Verify that the complex number u :=

√
2
2 +

√
2
2 i satisfies |u| = 1.

(c) Calculate the product uw and use the fact that
√
2 is approximately 1.41 to place the complex

number uw on the Argand diagram from part (a).19 What is |uw|?
(d) Let z1 := a + bi and z2 := c + di be complex numbers, with |z1| = 1. Show that z3 := z1z2

satisfies |z3| = |z2|. Conclude that geometrically, multiplying a complex number z2 by a
complex number z1 in a unit circle amounts to rotating the number z2 on an Argand diagram.

(e) We need two numbers to identify a complex number z unambiguously: Re z and Im z. Part
(d) suggests an alternative way. Start with the real number |z|, and then rotate it to where
z belongs. Show that for each complex number z, there is some complex number uz with
|uz| = 1 such that z = |z|uz. If z = 0, then the complex number uz is not unique. For
nonzero z, convince yourself that uz is unique (this should be obvious geometrically).

We pause for a word on calculus. A function is said to be complex valued if its outputs
are complex numbers. If a complex valued function’s outputs are always real numbers, then the
function is said to be real valued. If we have a complex valued function f that takes complex
numbers as inputs, then f is differentiable at z if there is a number f ′(z) such that

f(z + α) = f(z) + f ′(z)α+ |α|o(1)

where |α| is the absolute value of the complex number α that we drop to 0. How about integration?
If we write a complex valued function f as the sum of its real and imaginary parts, then for real

19Here is a way to figure out that
√
2 is approximately 1.41. The number

√
2 is the length of the diagonal of

a unit square, so it is a real number greater than 0. Define a real number ϵ > 0, for example ϵ := 0.01 and put
α = 0. Continue to increment the value of α by ϵ while α2 < 2. At some point, α2 ≥ 2 and we will know that
α− ϵ <

√
2 ≤ α. This naive but simple procedure will give better estimates of

√
2 for smaller ϵ, but will take longer.
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inputs, f : t 7→ Re f(t) + i Im f(t). Thus for a function f that maps real numbers in the interval
[a, b] to complex numbers, we have∫ b

a

f(t) dt :=

∫ b

a

Re f(t) dt+ i

∫ b

a

Im f(t) dt.

Complex matrices

Now that we know about complex numbers, we need no longer restrict ourselves to matrices
whose entries are real numbers. A complex matrix is a matrix whose entries are complex numbers.
A matrix whose entries are all real numbers may still be considered as a complex matrix, but we
will refer to it as a real matrix. A complex number is an example of a real matrix.

We know how to add, subtract, and multiply two real or complex matrices (assuming they have
compatible dimensions). Using matrix inverses, as discussed in Challenge 28, we could even speak
of “dividing” a matrix by another. If a matrix B is invertible, then AB−1 is the analogue of dividing
a matrix A by matrix B. In fact, we defined the division operator for complex numbers in this
manner. There is however, one operation that we can do with complex numbers that we do not
have a matrix analogue. This is the complex conjugation operation.

Let us examine the conjugation operation one more time. Let z := x+yi be a complex number.

It matrix representation is

(
x y
−y x

)
. The complex conjugate of z is z∗ := x − yi, whose matrix

representation is

(
x −y
y x

)
. The complex conjugate of z∗ is z, with the matrix representation given

by the first matrix. How can we transform the first matrix into the second matrix, and vice versa?
It appears that we need to “flip” the matrix entries over its diagonal. We formalize this below.

Let A be a matrix with dimension m× n as defined below.

A :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (5.8)

The transpose of matrix A, denoted At, is the matrix of dimension n×m defined by

At :=


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2m · · · amn

 .

For example, for the real matrix z :=

(
x y
−y x

)
, its transpose matrix is

zt =

(
x −y
y x

)
.

So is the analogue of a complex conjugation for matrices the transpose of a matrix? Well, we
have only been working with real matrices so far. We want to talk about the more general class
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of complex matrices. A complex matrix is a matrix where each entry is a real matrix of dimension
2×2. We need to take the transpose of each entry (complex conjugation) in addition to transposing
the matrix. This is the conjugate transpose operation.

If A is a complex matrix, with entries as defined in 5.8 above, then its conjugate transpose
is the matrix A† defined by

A† :=


a∗11 a∗21 · · · a∗m1

a∗12 a∗22 · · · a∗m2
...

...
. . .

...
a∗1n a∗2m · · · a∗mn

 .

Recall that a complex number z is real if z∗ = z. A complex matrix H is Hermitian if
H† = H.20 A Hermitian matrix is thus the complex matrix analogue of a real number.

The complex numbers located geometrically in the unit circle in an Argand diagram provided
the role of rotation (Challenge 30). What is the complex matrix analogue? Recall that a complex
number z is located geometrically in the unit circle if zz∗ = 1. A complex matrix U is unitary if
UU† = U†U = 1.21 A unitary matrix is thus the complex matrix analogue of a complex number in
the unit circle, and it rotates complex vectors (with compatible dimensions).

We began this section by trying to work out the product of two real vectors. The result of our
labour was the complex numbers. We then made a connection with real matrices to work out the
arithmetic of this new number system. Now that we know about complex vectors and complex
matrices, can we discover a number system even better?

Unfortunately, this procedure will not produce new fields, and we will have to give up some
essential properties that we expect numbers to have. We have been driven from the start to extend
our sense of what a number is, and this is where this journey ends.22 However, we have built up so
much machinery that it would be a shame not to put it into action before we part. Let us return
to the topic of dynamics that we began this chapter with and see if we can gain new insights with
what we have developed. Be warned, we will be rather cavalier about applying previously obtained
results in more general settings, and so our methods will be even less rigorous than before.

5.4 Quantum Dynamics

The Schrödinger equation

The only mechanical system we know of is the simple harmonic oscillator (which we examined
at the beginning of this chapter). It is in some sense a system that is the perfect setting for the
machinery we have developed, for we saw that an oscillator’s motion in phase space is an ellipse. An
ellipse with a suitable choice of units is a unit circle, so we will discard any unnecessary complexity
and simplify even more to consider an oscillator whose motion in phase space is a unit circle.

The location of an oscillator exists at a point in time, regardless of whether we choose to
catalogue it with some choice of units. Hence the “state” our oscillator is in is like a fruit salad |f⟩,
which exists in the physical world without us writing down its contents as a vector in some choice

20We can deduce that H must be a square matrix.
21Observe that U† is the matrix inverse of U . Hence a unitary matrix is always a square matrix with an inverse.
22There is still much left to discover about numbers, fields or otherwise, and so I do hope that with the end of

this journey, you will begin another!
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of units to quantify its ingredients. If someone pressed us for the ingredients, then we could present
a representation of |f⟩ as a vector f under some choice of units. We will denote the abstract
state of our oscillator at time t by |Ψ(t)⟩. If someone insists that we represent the location of our
oscillator with some unit of measurement, we will represent |Ψ⟩ as a complex vector Ψ. Notice we
are using a complex vector. A real vector is an example of a complex vector, and once our eyes are
open to the existence of complex numbers, complex vectors and complex matrices, there is little
reason for us to insist on real numbers.

We want to create a mathematical model for the motion of our oscillator through time. A
complex matrix is built to do just that, since a complex matrix exists to turn a complex vector into
another complex vector. Since a unitary matrix is the analogue of a complex number in the unit
circle, we will say that the state of pendulum at time t “evolves” into the state at time t+ α with
the following rule for some unitary matrix U(α).

|Ψ(t+ α)⟩ = U(α) |Ψ(t)⟩ (5.9)

At our initial state at time t = 0, we have

|Ψ(0)⟩ = U(0) |Ψ(0)⟩

since there is no time evolution. Thus U(0) = 1. Now U is a representation of a function that
takes in complex vectors and outputs complex vectors. One thing we want for the motion of our
oscillator is that the motion should be continuous. So we will assume that U is continuous. By
continuity, U(α) = U(0) + o(1).

Since we are dealing with a physical object, we may eventually want to do things like measure
the oscillator’s displacement away from the origin, and so on. Lengths are represented by real
numbers, or complex numbers z such that z∗ = z. We saw that the complex matrix analogue of
this is a Hermitian matrix. Let us introduce a Hermitian matrix to the mix.

U(α) = U(0) + o(1) = U(0)− αH + o(α).

Our decision to put a minus sign in front of H is by convention, and could easily be accounted for
(or removed) by replacing H with −H.23

But there is a problem here, do you see it? We are thinking of U(α) as a complex number.
U(0) = 1 and so it corresponds to a real number 1, and the Hermitian matrix H also corresponds to
a real number. What we are saying is that the complex number U(α) is a sum of two real numbers
(plus a term negligible with respect to α which we can ignore). This assumption is unnecessarily
restrictive. It would be much better to put an i in:

U(α) = 1− iαH + o(α).

We are simply doing the obvious: a complex number is being taken apart into a real part 1 and
an imaginary part −αH, where the minus sign is as convention dictates and can be removed if you
wish by relabeling H with −H.

We plug this back into Equation 5.9 and use linearity to get

|Ψ(t+ α)⟩ = U(α) |Ψ(t)⟩ = (1− iαH + o(α)) |Ψ(t)⟩
= |Ψ(t)⟩ − iαH |Ψ(t)⟩+ o(α).

23Notice that −H is the matrix (−1)H, where −1 is a real number.
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Where have we seen this kind of expression before? In the definition of a derivative! Therefore,

d

dt
|Ψ(t)⟩ = −iH |Ψ(t)⟩

What is our equation is telling us? It is telling us that the time evolution of the state of our
oscillator is generated by applying a Hermitian matrix H. That’s good, because H corresponds
to a real number! But before we celebrate our victory, let us recall our earlier discussion from
the beginning of this chapter that time translation is generated by energy. Since H is generating
time evolution of our oscillator, H is actually the total energy of our oscillator with dimension of
energy. Since we are working in phase space, we will call the Hermitian matrixH theHamiltonian.
Observe that our equations

U(α) = 1− iαH + o(α) and |Ψ(t+ α)⟩ = |Ψ(t)⟩ − iαH |Ψ(t)⟩+ o(α)

do not make sense dimensionally. To fix this we introduce a new dimensionful constant. Since α
has dimension Time and H has dimension Energy, we will cancel them out by introducing a new
constant ℏ called the reduced Planck constant with dimension Energy × Time. Then we will
put U(α) = 1− i

ℏαH + o(α) from which we deduce |Ψ(t+ α)⟩ = |Ψ(t)⟩ − iH
ℏ α |Ψ(t)⟩+ o(α), giving

us the equation d
dt |Ψ⟩ = −

i
ℏH |Ψ⟩, or equivalently:

iℏ
d

dt
|Ψ⟩ = H |Ψ⟩

the Schrödinger equation.

The equation in 1 dimension

We have been dealing with abstract states |Ψ⟩ thus far. How about if we wish to talk about the
state’s represention in a complex vector Ψ? This is the analogue of a “position” of our oscillator,
and we insist that position functions in the physical world are differentiable so that we can calculate
velocities. Thus we will assume that Ψ is differentiable to get

Ψ(x− α) = Ψ(x)− α
d

dx
Ψ(x) + o(α) =

(
1− α

d

dx

)
Ψ(x) + o(α)

where the minus sign is once again simply conforming to our convention from before, and the
second equality is due to linearity. What does this equation tell us? That to spatially translate
our oscillator from location x to x − α, we are applying the operation

(
1− α d

dx

)
.24 Thus the

translation operator T (α) is given by

T (α) = 1− α
d

dx
.

I don’t know about you, but this doesn’t have enough i’s and ℏ’s for my taste. We know that the
time evolution operator U(α) is given by U(α) = 1− i

ℏαH. To maintain consistency with the time
evolution operator, we write

T (α) = 1− i

ℏ
α

(
−iℏ d

dx

)
.

24Modulo some terms negligible compared to α.
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Recall that translation is generated by momentum, and so just like H was an energy term, the term
in the brackets is a momentum term. We call P := −iℏ d

dx the momentum operator, and in fact,
as you should verify, it has the correct dimension of momentum!

Recall that the mechanical energy of a system is the sum of the kinetic energy p2

2m and potential

energy V . Since P 2f = PPf =
(
−iℏ d

dx

) (
−iℏ d

dx

)
f = −ℏ2 d2

dx2 f , we have H = − ℏ2

2m
d2

dx2 + V . Plug-
ging this into the Schrödinger equation for the complex vector Ψ, we obtain the one-dimensional
Schrödinger equation for a particle confined to a line with mass m shown below.

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ

Since Ψ is a function of not only time t but also of space x, the derivative d
dt has been replaced with

a partial derivative ∂
∂t . We also have a second partial derivative ∂2

∂x2 from the momentum operator
of the kinetic energy.

Challenge 31 The spirit of our approach is starting from our intuition gained from previous
chapters and generalizing. In particular, we will assume that all instances of eX for some X (real,
complex, complex matrices, etc) obey the same rules as the real exponential function ex.

(a) In Section 3.4, we defined the real exponential function ex whose derivative was itself. That
is, ex+α = ex + exα + |α|o(1). Show that an input to the exponential function must be
dimensionless.

(b) Taking x := 0 gives eα = e0 + e0α + |α|o(1). Let A be a dimensionless constant. Using the
fact that e0 = 1 and |c|o(1) = o(1) for a constant c, show that eαA = 1 + αA + o(1). For a
scalar c and matrix A, we define the matrix exponential as ecA := 1 + cA+ o(1).

(c) Use the fact that ea+b = eaeb to show that d
dx (eAx) = AeAx.

(d) We began with the relation |Ψ(t)⟩ = U(t) |Ψ(0)⟩. Plugging this into the Schrodinger equation
gives iℏ d

dtU(t) |Ψ(0)⟩ = HU(t) |Ψ(0)⟩. This is true for any |Ψ(0)⟩, and we are free to pick

whichever initial value of |Ψ(0)⟩ we want, so we will ignore those terms and write iℏ d
dtU(t) =

HU(t). Assuming that H is a time-independent Hamiltonian (that is, H is not a function of
time), and thus treating H like a constant, this is a differential equation that looks familiar
from part (c). Find the factor A so that U(t) = eAt is a solution to the differential equation
iℏ d

dtU(t) = HU(t). In particular, notice that the matrix exponential eiX rotates complex
vectors, because it is a unitary matrix.

Real Axis

Imaginary Axis
1

1−1

(Re eiθ, Im eiθ)

1

θ Real Axis

Imaginary Axis
1

1−1

(Re e−iθ, Im e−iθ)

−θ

Figure 5.6: Argand diagram of eiθ (left) and e−iθ (right).

The interpretation that eiX rotates complex vectors is incredibly useful. Let us stick to the
simplest case of the rotation by eiθ where θ is a real number. Taking the complex number 1 on
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the unit circle and multiplying it by eiθ for positive θ rotates 1 into another complex number from
the x-axis upwards in the unit circle (left diagram in Figure 5.6). How much does the function eiθ

rotate a complex number by? Recall that an angle is dimensionless; the simplest formula for the
amount of rotation would be c · θ. The dimensionless constant c is very easy to remember, it is 1!
So the function eiθ rotates a complex number by angle θ. If θ is negative, then taking the complex
number 1 on the unit circle and multiplying it by eiθ rotates 1 by angle θ from the x-axis downwards
(right diagram in Figure 5.6). Observe that (eiθ)∗ = (e−iθ). From Section 3.2, we saw that the
Pythagorean theorem allows us to identify each point on the unit circle with a right triangle.

Definition 33. The cosine function is defined to be cos : θ 7→ Re eiθ. The sine function is defined
to be sin : θ 7→ Im eiθ. The tangent function is defined to be tan : θ 7→ sin θ/ cos θ.

By the Pythagorean theorem, cos2 θ + sin2 θ = 1.25 Since eiθ = Re eiθ + i Im eiθ, we know that

eiθ = cos θ + i sin θ. (5.10)

Equation 5.10 is called Euler’s formula.

A rotation of a nonzero complex number z by angle (θ1 + θ2) is achieved by taking the product
z · ei(θ1+θ2). The same rotation can be achieved by rotating it first by angle θ1 with z · eiθ1 and then
rotating the result by angle θ2 by taking a second product (z · eiθ1) · eiθ2 . Therefore,

ei(θ1+θ2) = ei(θ1+θ2). (5.11)

Challenge 32

(a) Use the definition of the cosine function and Equation 5.11 to show that

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2.

[Hint: after following the steps given, use Euler’s formula (there is not a whole lot to try!).]

(b) Use the definition of the sine function and Equation 5.11 to show that

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.

The equations of parts (a) and (b) are called the trigonometric addition formulas.

(c) Use Equation 5.11 to obtain the double angle formulas:

cos(2θ) = cos2 θ − sin2 θ, sin(2θ) = 2 sin θ cos θ.

(d) Use the well-ordering principle on Equation 5.11 to show that for each natural number n:

(eiθ)n = einθ

(e) Use part (d) to obtain de Moivre’s formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

(f) Use Challenge 29 and the fact that (eiθ)∗ = (e−iθ) to show that:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

25The expressions cos2 θ and sin2 θ mean (cos θ)2 and (sin θ)2 respectively.
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Challenge 33 Consider a particle of mass m moving on a line located at position x0 at initial
time t = 0. Put

U(x, t) :=

√
m

2πiℏt
eim(x−x0)

2/(2ℏt).

We will think of eim(x−x0)
2/(2ℏt) as the real exponential function ecx. That is to say, (ecx)′ = cecx.

(a) As a warm up, use Challenge 32 part (f) to show that

d

dθ
cos θ = − sin θ,

d

dθ
sin θ = cos θ,

d

dθ
tan θ =

1

cos2 θ
.

(b) Show that
∂

∂x
U =

im(x− x0)

ℏt
U.

(c) Show that
∂2

∂x2
U =

im

ℏt
U − m2(x− x0)

2

ℏ2t2
U.

(d) Show that
∂

∂t
U = − 1

2t
U − im(x− x0)

2

2ℏt2
U.

(e) Conclude that

−iℏ ∂

∂t
U = − ℏ

2m

∂2

∂x2
U

and thus U is a solution to the one-dimensional Schrödinger equation with V = 0.

Waves and superposition

Around the time of the invention of calculus, there was a controversy over the nature of light.
Christiaan Huygens argued that light was a wave, while Newton argued that light must be a
particle.26 Although Newton initially had the upper hand, Thomas Young’s experiments in 1801
seemed to settle the question in favor of Huygens. Subsequently, there was a great deal of effort
to try and bridge the wave nature of light with that of ordinary particle dynamics. A key result
of such investigations was one of the crowning jewels of mathematical physics of the 19th Century:
the Hamilton–Jacobi equation

−∂S

∂t
= H

(
x, p :=

∂S

∂x
, t

)
. (5.12)

The function H is the Hamiltonian of the system, with momentum defined by p := ∂S
∂x . It is

equivalent to Newton’s second law, but derived using the machinery of infinite dimensional calculus.

Can our own investigations lead to any illumination on this issue? Let us first investigate what
we can about wave phenomena. As with most physical phenomena, we will need a differential
equation to describe waves. This equation, which we will call the wave equation, will model how a
wave changes over time.

26Newton’s experimental work on optics and light involved a very famous experiment that nearly blinded him.
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x

y f(x)

x0

v

x0 + vt

f(x− vt)

Figure 5.7: A wave traveling at speed v to the right.

Imagine a wave which we represent by a function f that is traveling to the right at some speed
v (see Figure 5.7). To simplify matters, we will assume an idealized situation in which the wave
does not widen or drop over time. We could imagine a water wave, and the number f(x0, t0) will
tell us how much water is elevated in the x-coordinate x0 at time t0. Let us denote the initial wave
at time t = 0 by the function g, that is: g : x 7→ f(x, 0). After time t, the wave will have travelled
to the right by distance vt. Thus all the numbers g(x) will have shifted to the right by vt. Suppose
an object is standing still, but we have shifted all the x-coordinates to the left. Then the object
will have shifted to the right! Similarly, we can shift the number g(x) to the right by a substitution
shifting all the x-coordinates to the left: x 7→ x− vt. Therefore, after time t,

f(x, t) = g(x− vt).

For a wave moving to the left, the same reasoning gives f(x, t) = g(x + vt). Now, if we throw
a pebble to a pool of water and take a cross section, waves are traveling not only to the left, but
also to the right at the same time. So our wave equation must satisfy both cases. In fact, if we
imagine the pebble thrown into a pool of water and take a cross section, we not only see two waves
dispersing away, but there are multiple of different sizes at the same time! Therefore, our wave
equation must allow not just the sum of the functions g(x−vt) and g(x+vt), but each of the linear
combination:

a · g(x− vt) + b · g(x+ vt).

This looks like a tall order, can we do it? First, because we want a differential equation that
describes the dynamics of the wave over time, the equation will involve some time derivative of
f . This causes a problem, because the chain rule stipulates that the time derivative of f(x, t) :=
g(x − vt) and the time derivative of f(x, t) := g(x + vt) will differ by a minus sign. But we need
both cases to be solutions! Thus one time derivative will not be sufficient: in order to make both
functions work as solutions to our wave equation, we must take two time derivatives of f .

Let us crank out the time derivatives. Since we know that the twice time derivatives of g(x−vt)
and g(x+ vt) will equal, we will only do it for the former. By the chain rule,

∂f

∂t
= −vg′(x− vt),

∂2f

∂t2
= v2g′′(x− vt).

We see that there is a twice spatial derivative involved. Now,

∂f

∂x
= g′(x− vt),

∂2f

∂x2
= g′′(x− vt).
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Therefore, the one-dimensional wave equation for a wave with speed v is given by the following.

∂2f

∂t2
= v2

∂2f

∂x2
(5.13)

This is a linear differential equation because linear combinations of solutions to the wave equa-
tion are also solutions.27

Now let us examine the one-dimensional Schrödinger equation. To simplify, let us consider a
free particle, which is a particle with no forces acting on it. Then V = 0 and so the equation is
simply

− i

ℏ
∂Ψ

∂t
=

1

2m

∂2Ψ

∂x2
.28

This doesn’t really look like a wave equation because we are missing a derivative with respect to
time. But check this out, remember the Schrödinger equation for abstract states |Ψ⟩? It was

d

dt
|Ψ⟩ = − i

ℏ
H |Ψ⟩ . (5.14)

We see that the term − i
ℏ is like a time derivative! So we could consider the Schrödinger equation

for the free particle to be a wave equation. Because of this connection, the object Ψ is called a
wavefunction. In fact, just like the wave equation, the general Schrödinger equation 5.14 is a
linear differential equation. Indeed, derivatives are linear and (Hermitian) matrices are linear, so
for two states |Ψ1⟩, |Ψ2⟩, and scalars a, b:

d

dt

(
a |Ψ1⟩+ b |Ψ2⟩

)
= a

d

dt
|Ψ1⟩+ b

d

dt
|Ψ2⟩ = −a

i

ℏ
H |Ψ1⟩ − b

i

ℏ
H |Ψ2⟩ = −

i

ℏ
H
(
a |Ψ1⟩+ b |Ψ2⟩

)
which verifies that linear combinations of solutions to the Schrödinger equation are also solutions.
Linear combinations are also called superpositions. Linear equations like the wave equation and
the Schrödinger equation are said to obey the superposition principle.

We started this section by trying to upgrade the mathematical apparatus for describing a particle
(a simple oscillator) and got an equation that has so much in common with waves! The distinction
between particles and waves are so blurred, it is no wonder that scientists were debating about
whether light was a wave or a particle.

Challenge 34 From Challenge 30, we saw that each complex number z is as a product of the real
number |z| and a complex number in the unit circle uz. Just as the number uz rotates a complex
number, the unitary matrix U rotates our states to create time evolution on our oscillator. In the
case of our simple system where the Hamiltonian H stays the same over time, we know that the
unitary matrix U can take the form U(t) = e−iH/ℏ (Challenge 31). So eiX rotates complex vectors.

(a) Recall that the wavefunction Ψ is a complex vector. Let us take the special case where Ψ is a
complex valued function of position x and time t (like a wave, but complex). Put Ψ := ρeiω/ℏ

where ρ is a real valued function of x and t that determines the scaling and ω is some real
valued function of x and t that determines the rotation. Use the product rule to show that

∂Ψ

∂t
=

(
ρ̇+ i

ω̇

ℏ
ρ

)
eiω/ℏ,

∂Ψ

∂x
=

(
ρ′ + i

ω′

ℏ
ρ

)
eiω/ℏ.

27I encourage you to verify this by using the derivative rules to check that h : t 7→ ag(x− vt) + bg(x+ vt) satisfies

the wave equation ∂2h
∂t2

= v2 ∂2h
∂x2 . This should be simple, for (partial) derivatives are linear!

28We have divided both sides by the nonzero constant ℏ2 and multiplied both sides by −1.
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(b) Apply the product rule on ∂Ψ
∂x once more to show that

∂2Ψ

∂x2
=

(
ρ′′ + 2i

ρ′ω′

ℏ
+ i

ω′′

ℏ
ρ− (ω′)2

ℏ2
ρ

)
eiω(x,t)/ℏ.

(c) The one-dimensional Schrödinger equation states that iℏ∂Ψ
∂t = − ℏ2

2m
∂2Ψ
∂x2 + VΨ. Plug in your

answers from part (a) and part (b) into the one-dimensional Schrödinger equation, divide
both sides by eiω/ℏ and do all the multiplication by iℏ (on the left side) and multiplication

by ℏ2

2m (on the right side) to obtain the equation

iℏρ̇− ρω̇ = − ℏ2

2m
ρ′′ − i

ℏ
m
ρ′ω′ − i

ℏ
2m

ω′′ρ+
1

2m
(ω′)2ρ+ V ρ. (5.15)

(d) Equation 5.15 from part (c) is far too complicated to reason with and it looks nothing like
the Schrödinger equation it is supposed to be! But notice how all the ℏ’s in the bottom of
the fractions have magically disappeared. Take ℏ→ 0 to obtain a much simpler equation and
then divide through by R (so R must be nonzero for each x and t, interesting!) to get the
following.29

−∂ω

∂t
=

1

2m

(
∂ω

∂x

)2

+ V (x) (5.16)

(e) The right side of Equation 5.16 from part (d) is a Hamiltonian (total energy) with momentum
p := ∂ω

∂x . Conclude that

−∂ω

∂t
= H

(
x, p :=

∂ω

∂x
, t

)
. (5.17)

Have we seen Equation 5.17 before? It is simply the Hamilton–Jacobi equation (Equation 5.12)!
We see that classical mechanics is a special case of this new theory in the limit ℏ → 0. Thus in
situations of scale ℏ, we need to use Schrödinger’s equation, but in situations involving scales where
ℏ is negligible, then we can use classical mechanics. Recall that ℏ has the dimension Energy ×
Time, where energy is measured in joules (symbol J). The value of ℏ is about 1.05457× 10−34 J·s,
a negligible amount indeed! Such a value can be considered practically zero in our dally lives.

This is a theory of an extremely tiny world, a world where our classical intuition in trying to
distinguish between waves and particles are doomed to a failure. This is the realm of quantum
mechanics. Nevertheless, this theory of tiny particles is used everywhere. Everyone carries around
in their hands or their pockets a proof that the Schrödinger equation works.

The circle

The dynamics of an oscillator in phase space is that of an ellipse, however its motion is a mass
simply moving back and forth. How about we look into a system with something taking the motion
of a circle? The development of calculus from Newton’s side began with the desire to understand
the motion of planets. However, as we saw, these are too big to study using quantum mechanics.

29What does it mean to drop a constant to 0? Suppose we were measuring length by the height of a building h
and we took h → 0. That means we are scaling up everything much larger than the building, while taking the length
of our building and everything of roughly the same size or smaller to be negligible. Thus by taking ℏ → 0, we are
taking the constant ℏ to be negligible.
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So let us examine the simplest circular system that is also tiny. An atom, but not just any atom:
the hydrogen atom. The hydrogen atom is not only by far the most abundant type of atom, it is
also the simplest: an electron orbiting a proton (see Figure 5.8).

r

proton

electron

Figure 5.8: A hydrogen atom (diagram not to scale).

Both the electron and the proton are charged particles with a charge of −1e and e, respectively,
where e is the elementary charge. The electric force acting on each other due to the charge is
described by Coulomb’s law. Let us consider two particles with charge q1 and q2 that are distance
r away of each other. First of all, particles of opposite charges attract and particles of like charges
repel, with their attraction or repulsion proportional to the product of their charges: q1q2.

y

x

z

r
q1

Figure 5.9: All charged particles of equal charge on the boundary of a sphere of radius r centered
at a point charge q1 feels the same electric force.

The force of attraction/repulsion falls off with distance, and the strength of the force is felt
equally for all charged particle of the same charge on the same distance away from the source
charge.30 Thus all charged particles with charge q2 in the boundary of a sphere of radius r (see
Figure 5.9) are affected equally from the particle q1 in the the origin. To calculate the drop off in
strength as we increase the distance r, let us imagine the electric force from charge q1 as it tries
to reach infinitely far away. As the reach of the force r increases, the force must apply equally to
all charges of the same charge that are equidistance from the source charge q1. Thus as the force
reaches distance r, the force is sweeping out a volume of a sphere of radius r. The drop off in force

30It would be weird if there was some distinguished axis where the force was stronger or weaker.
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over distance r is the rate of change of the volume of the sphere: in other words, the derivative of
the volume with respect to r.31

From Challenge 12, we know that the volume of a sphere of radius r is given by 4
3πr

3. The rate

of change of the volume of a sphere is then
(
4
3πr

3
)′

= 4πr2 (this is actually the surface area of a
sphere of radius r; due to the uniform rate of change of an area of a circle in all directions, the
method gives the circumference of a circle of radius r as (πr2)′ = 2πr). Therefore, the force law is

F =
q1q2

4πr2ϵ0
(5.18)

where ϵ0 is a dimensionful constant that allows us match the units in both sides of the equation.
Equation 5.18 is called Coulomb’s law.

Let us calculate the potential energy for the hydrogen atom, where q1q2 = −e2. We take the
reference point to be infinitely far away from our proton, where the force due to our proton is zero.
The potential energy V of the work needed to bring in an electron from infinitely far away to within
distance r of a proton is:

V =

∫ r

o

−
(
−e2

4πϵ0

1

x2

)
dx =

e2

4πϵ0

∫ r

o

1

x2
dx = − e2

4πϵ0

1

r
+ 0 = − e2

4πϵ0

1

r
.

Now let us bring in some quantum mechanics. The one-dimensional Schrödinger equation con-

tains a twice spatial derivative for the x-axis, ∂2

∂x2 :

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2

∂x2
Ψ+ VΨ.

The Schrödinger equation in three dimensions is given by the following, where the Laplacian ∇2 =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 takes the place of ∂2

∂x2 .
32

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ+ VΨ

For the hydrogen atom, the mass term is now the mass of the electron me, and the potential energy

V is given by − e2

4πϵ0
1
r . Therefore, the Schrödinger equation for the hydrogen atom is

iℏ
∂Ψ

∂t
= − ℏ2

2me
∇2Ψ− e2

4πϵ0

1

r
Ψ.

There is a lot going on in this equation, so I have written down the dimensionful quantities of the
equation in the table below with the radius of the hydrogen atom denoted by the symbol a0. The
letter L stands for the dimension Length, the letter M stands for the dimension Mass, and the letter
T stands for the dimension Time.

31This works because we assume all particles of charge q2 of the same distance r away from the source charge q1
are affected equally. This argument will not work if particles of charge q2 on the boundary of a general ellipsoid felt
the same force, because the rate of change is no longer uniform and differing depending on the direction away.

32Energy is a scalar quantity, and so we cannot replace ∂2

∂x2 with the vector
(

∂2

∂x2
∂2

∂y2
∂2

∂z2

)t
.
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Variable Dimension
Radius of hydrogen atom a0 L
Reduced Planck constant ℏ ML2/T
Electron mass me M

Coulomb term e2

4πϵ0
ML3/T2

Challenge 35

(a) The simplest formula for expressing the radius a0 using the other three variables is

a0 = β · ℏx ·my
e ·
(

e2

4πϵ0

)z

,

where β is some dimensionless constant. Find integers x, y, and z that satisfy the formula.

(b) Suppose we knew nothing about quantum mechanics, and so we did not know the existence
of ℏ. Show that it is not possible to find a combination of integers x and y such that a0 =

β ·mx
e ·
(

e2

4πϵ0

)y
.

(c) By part (b) we know that ℏ is crucial in our formula in part (a). However, the value of
ℏ is far too small and so there is a danger we ignore it when rounding things while we
do our calculations. Furthermore, our formula from part (a) contains too many constants.
Let us fix both problems. We introduce a new constant c, the speed of light in vacuum

and the fine-structure constant α := e2

4πϵ0ℏc . Find integers x′, y′, and z′ such that a0 =

β · (ℏc)x′ · (mec
2)y

′ · αz′
.33

(d) The value of ℏc is about 200 eV nm, the value of mec
2 is about 0.5× 106 eV, and α is about

1/137. The unit of energy eV is called an electronvolt which, if we did everything correctly
in part (c), should cancel out (because a0 has the dimension of Length, and an electronvolt
is not a Length!). The unit nm is nanometers, which is defined to be 1 × 10−9 meters.
Calculate the value of a0 using the values given, then include the dimensionless constant β at
the end.

(e) We introduced the “speed of light in vacuum” c in order to simplify calculations. But perhaps
we should have included it from the beginning in part (a)? We did not include c because it
did not show up in the Schrödinger equation. Nevertheless, form a velocity v0 using dimen-

sional analysis on the variables ℏ,me,
e2

4πϵ0
, a0 and the new constant c.34 Conclude that v0 is

proportional to αc (about c/137). Since the velocity involved is quite small compared to the
speed of light, relativistic effects can be ignored, and we were justified in not including c at
the start.

(f) An angstrom, denoted by the symbol Å, is defined to be 0.1 nm. The diameter of the
hydrogen atom is experimentally known to be about 1.1 Å.35 To a first approximation, what
is the dimensionless constant β?

33Hint: just a glance at our formula from part (a) gives the values of y′ and z′. So the only thing to do is match
the units with x′.

34Hint: we are looking for the simplest formula. Most of the constants will be unneeded.
35Recall that a diameter of a circle is twice that of its radius.
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All done?

Calculus is not easy. However, if you go back to the first pages, you will discover what follows
to be painfully slow baby steps. Allow me to say a few words on baby steps.

When we were very very young, we were at the care of our guardians, fed and cared for, with
no harm from natural predators in the wild. The optimal thing to do was to lie on our backs and
idle. But that is not what you and I did. We crawled. We tried to make some steps and failed. We
would fall, and get up again, and fall. No matter the hurt from the falling and obstacles, we would
take our baby steps to wherever our curiosities lead us.

You were born to be a discoverer. You were trained to be one from the youngest age, by yourself!
You did not need me to tell you that, but perhaps those baby steps were so long ago that a gentle
reminder was in order. Now go forth and discover!



A

Gaußian Integrals

A.1 The Integrals

We are back to working with real numbers. The goal of this Appendix is to calculate the most
important integral of them all:

∫∞
−∞ e−ax2

dx, where a is a positive real number. First, let us
try and see what the answer should look like. Let us assign the dimension Length to input x.
Because an input to the exponential function must be dimensionless,1 the constant a will have to
take dimension Length−2. Recall that the derivative of f has the dimension of f divided by the
dimension of the input x. The inverse operation of integration will thus take the dimension of f
and multiply by the dimension of the input x. Therefore, the dimension of

∫∞
−∞ e−ax2

dx is Length.

The only dimensionful quantity we have is a (of dimension Length−2) and to form a dimension
of Length, the simplest solution is c√

a
, for some constant c. It turns out that the dimensionless

constant c is
√
π. Therefore, ∫ ∞

−∞
e−ax2

dx =

√
π

a
. (A.1)

In this Appendix, we will show that c is
√
π.

Before we dive into the calculation, let us extend this by considering the integral
∫∞
−∞ e−ax2+bx dx,

where a is positive and b is some real number. Just as we calculated ellipses by reducing it to a
circle, which we reduced to a unit circle, we will reduce this complicated integral into a simpler one.

The trick we will need is a very useful one called completing the square.

Proposition 34 (Quadratic Formula). A quadratic equation ax2 + bx + c = 0 with nonzero a
is solved by the formula

x =
−b±

√
b2 − 4ac

2a
.

Proof. We use the the technique of completing the square. Dividing by a and subtracting c/a
on both sides of the equation gives

x2 +
b

a
x = − c

a
.

1This was left for you in Challenge 31, but let’s do it again. Suppose ex has dimension Y and x has dimension
X. Then (ex)′ has dimension Y/X. But (ex)′ = ex, so Y/X = Y , and x must be dimensionless.
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The idea is that we want the left side to be of the form (x + α)2, for some α. To do this, we add(
b
2a

)2
to both sides:

x2 +
b

a
x+

(
b

2a

)2

= − c

a
+

(
b

2a

)2

.

The left side of the equation is now a square, as you should verify. Combining the two terms on
the right gives (

x+
b

2a

)2

=
b2 − 4ac

4a2
.

Taking the square root on both sides gives us the formula:

x+
b

2a
= ±
√
b2 − 4ac

2a
.

The symbol ± means there are two solutions b
2a+

√
b2−4ac
2a and b

2a−
√
b2−4ac
2a . To see the necessity

of two roots, observe that if a = ±2 then a2 = 4. But if we take the square root
√
a2, then we are

only left with the positive solution a = 2. To fix this, we add the ± symbol and write ±
√
a2.

Theorem 35 (The Gaußian Integral).∫ ∞

−∞
e−ax2+bx dx = eb

2/(4a)

√
π

a

Proof. First, you should check that the answer makes sense dimensionally. We are going to reduce
this integral into the integral in Equation A.1. If we turn −ax2+bx into −au2+c for some constant
c, then Equation A.1 gives∫ ∞

−∞
e−au2+c du =

∫ ∞

−∞
ece−au2

du = ec
∫ ∞

−∞
e−au2

du = ec
√

π

a
.

In order to do this, we complete the square by adding a constant:

−ax2 + bx = −ax2 + bx− b2

4a
+

b2

4a
= −a

(
x2 − b

2a

)2

+
b2

4a
.

So we should take c := b2/4a and u : x 7→ x− b/(2a). Since u′ = 1, the substitution rule gives∫ ∞

−∞
e−ax2+bx dx = eb

2/(4a)

∫ ∞

−∞
e−ax2

dx = eb
2/(4a)

√
π

a
.

Let us return to the integral
∫∞
−∞ e−x2

dx. First, notice that because of the square, the function

e−x2

is an even function. This means that
∫∞
0

e−ax2

dx =
∫ 0

−∞ e−ax2

dx and so
∫∞
−∞ e−x2

dx =

2
∫∞
0

e−x2

dx.
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One of the endpoints of our integral
∫∞
0

e−x2

dx is not finite. An improper integral
∫∞
o

f(x) dx
for some real number o is defined by∫ ∞

o

f(x) dx := lim
t→∞

∫ t

o

f(x) dx.

Now that we know what we are dealing with, let us go on ahead and calculate. Not so fast! It turns
out that the integral

∫∞
0

e−x2

dx is special and very difficult to calculate.

This is hard to imagine. Suppose we changed the function a little bit by removing the square
and putting back the positive constant a: ∫ ∞

0

e−ax dx.

This is a relatively straightforward integral because (−e−ax/a)′ = e−ax and limx→∞ e−x = 0:

lim
t→∞

∫ t

0

e−ax dx = lim
t→∞

(
−e−ax

a

∣∣∣∣t
0

)
= lim

t→∞

(
− 1

aeat
+

e0

a

)
= 0 +

1

a
=

1

a
.

Challenge 36 We can think of the integral
∫∞
0

e−ax dx as a function of a, and let f : a 7→∫∞
0

e−ax dx be a function defined on the interval (0,∞). Taking the derivative of f with respect to
a (which is now a variable) shows that

− 1

a2
= f ′(a) =

∫ ∞

0

d

da
e−ax dx = −

∫ ∞

0

xe−ax dx.

This technique is called differentiation under the integral sign.

(a) Use the well-ordering principle to show that∫ ∞

0

xne−ax dx =
n!

an+1

and obtain the gamma function:

n! =

∫ ∞

0

xne−x dx.2

(b) Apply a differentiation under the integral sign on Equation A.1 to show that∫ ∞

−∞
x2e−ax2

dx =
1

2

√
π

a3
.

Observe that repeating the technique gives the formula for
∫∞
−∞ x4e−ax2

dx and so on.

(c) Apply differentiation under the integral sign on Theorem 35 (on the variable b) to show that∫ ∞

−∞
xe−ax2+bx dx =

b

2a
eb

2/(4a)

√
π

a
.

2This function allows us to calculate factorials for positive real numbers n, beyond natural numbers.
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Polar coordinates

Calculating the integral of e−ax was simple because (−e−ax/a)′ = e−ax. But differentiating e−x2

gives an extra term −2x, which is not a constant. To fix this, we will try to work out some sort of
substitution. For example, we can find the integral

∫∞
0

xe−ax2

dx with the substitution g(x) := x2:∫ ∞

0

xe−ax2

dx =
1

2

∫ ∞

0

e−ax2

2x dx =
1

2

∫ ∞

0

e−ag(x)g′(x) dx =
1

2

∫ ∞

0

e−au du =
1

2a
.

Real Axis

Imaginary Axis

r

r−r

(Re reiθ, Im reiθ)

θ x-axis

y-axis

r

r−r

(r cos θ, r sin θ)

θ

Figure A.1: Argand diagram of reiθ (left), which is the same as (r cos θ, r sin θ) (right).

Although we are working with real numbers, there is no reason we cannot use insights from
complex numbers. We will simply replace the real axis with the label “x-axis” and the imaginary axis
with the label “y-axis”. Then the complex number z := reiθ on the Argand diagram corresponds
to the coordinate (r cos θ, r sin θ) on our x-y plane, which is the same as (Re z, Im z) on the Argand
diagram. Since the real and imaginary parts of a complex number are real, all is good!

The representation of coordinates (x, y) on the x-y plane using the representation (r cos θ, r sin θ)
is called polar coordinates. One thing to note is that we will measure angle in radians. Recall
that an angle Θ is the length of the red arc divided by the circumference of the blue circle (see
footnote).3 The angle that covers the full circle is defined in radians to be the circumference of the
unit circle 2π. Hence a right angle in radians is π/2 because we need four right angles to cover the
circumference of a circle. The angle corresponding to a semicircle is π because we need two of them
to cover the circumference of a circle.

x, y ≥ 0 y ≥ 0 x ≥ 0

The region x ≥ 0 and y ≥ 0 (first diagram above) in polar coordinates is the region where
r ≥ 0 and θ ∈ [0, π/2]. The region y ≥ 0 (second diagram) in polar coordinates is the region r ≥ 0
and θ ∈ [0, π]. The region x ≥ 0 (third diagram) in polar coordinates is the region r ≥ 0 and
θ ∈ [−π/2, π/2]. The entirety of the x-y plane (final diagram) is represented in polar coordinates
by the region r ≥ 0 and θ ∈ [0, 2π].

3

Θ
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Now that we have a new way of representing coordinates, let us figure out how to make a
substitution for an integral.

A.2 Change of Variables

We recall differentiation with dual numbers. Suppose we have some function f that is differen-
tiable at t. Then by the definition of the derivative, the equation f(t+ aϵ) = f(t)+ f ′(t)(aϵ) holds.
We are free to choose our origin of measurement, so define t to be the origin of the x-axis and f(t)
to be the origin of the y-axis so that t = 0 and f(t) = 0. Then the equation simplifies to

f(aϵ) = f ′(t)(aϵ).

Everything except the number a in this equation is taken as fixed: function f , the number t, the
dual number ϵ. However, the number a is a variable. Take another number ã > a and observe that
f(ãϵ) = f ′(t)(ãϵ) also holds. Subtracting one equation from another we have

f(ãϵ)− f(aϵ)︸ ︷︷ ︸
rise in value

= f ′(t)(ãϵ)− f ′(t)(aϵ) = f ′(t) ·
(
[ã− a] ϵ

)︸ ︷︷ ︸
change along x-axis

.

We will denote the function’s rise by df and the change of inputs along the x-axis by dx and write

df = f ′(t) dx. (A.2)

Notice that dx and df are functions that take in a and output a real number. The outputs of dx
and df satisfy the relationship given in Equation A.2.

Let us extend this idea to functions of two variables and three variables. Suppose function f
takes two inputs x and y. The relationship between the function’s rise and the increase in variable
x is described precisely by ∂xf(t). Similarly, the relationship between the function’s rise and the
increase in the variable y is given by the number ∂yf(t). Therefore,

df = ∂xf(t) dx+ ∂yf(t) dy. (A.3)

Repeating this for a function f of three variables, we have df = ∂xf(t) dx+ ∂yf(t) dy + ∂zf(t) dz.

We have new objects, so let’s do some arithmetic with it! As with the dual numbers, we will
interpret the symbols d□ to be nonzero quantities that square to zero. The difference is that there
was only one ϵ, but now we have lots of d□, so this rule is not enough. The rule that (d□)2 = 0 is
a rule about products of these symbols; we need a rule about addition. But we need our addition
rule to be compatible with the squaring rule we already have. The simplest way we can achieve
this is to tie the addition rule to the squaring rule: summing the symbols d□ is fine, but if we try
to square that sum, then it also becomes zero.

As an example, let X := dx+ dy. Then X2 = 0, and so

0 = X2 = (dx+ dy)(dx+ dy) = (dx)2 + dx dy + dy dx+ (dy)2 = 0 + dx dy + dy dx+ 0.

We see that dx dy = −dy dx. How about a product of linear combinations?

(αdx+ β dy)(γ dx+ δ dy) = 0 + (αδ)dx dy + (βγ)dy dx+ 0 = (αδ − βγ)dx dy. (A.4)
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We now apply our new algebra to do calculus. The polar coordinates are described by the rule

x = r cos θ and y = r sin θ. (A.5)

Observe that we can regard x and y as functions of r and θ. In particular, let us write

x = g1(r, θ) := r cos θ and y = g2(r, θ) := r sin θ.

We already worked out a function’s rise with respects to increases in each of its inputs in Equation
A.3. We see that

dx = ∂rg1 dr + ∂θg1 dθ and dy = ∂rg2 dr + ∂θg2 dθ.

Using the derivatives of cosines and sines (Challenge 33) the partial derivatives are:

∂rg1 = cos θ, ∂θg1 = −r sin θ, ∂rg2 = sin θ, ∂θg2 = r cos θ.

Their product is then the product of linear combinations from Equation A.4

dx dy = (∂rg1∂θg2 − ∂θg1∂rg2) dr dθ = (r cos2 θ + r sin2 θ) dr dθ = r dr dθ (A.6)

where we have used the Pythagorean theorem: cos2 θ + sin2 θ = 1. How about we use this to
calculate the area of a circle once more?

An area of a circle of radius r̄ can be calculated with the integral
∫
A
dx dy, where A is the set

of points (x, y) on the x-y plane such that x2 + y2 ≤ r̄2. Each point in A corresponds to a point
(r cos θ, r sin θ), where r ∈ [0, r̄] and θ ∈ [0, 2π]. We will take the integral

∫
A
dx dy and substitute

set A with the region r ∈ [0, r̄] and θ ∈ [0, 2π] and substitute dx dy with our result from Equation
A.6. Applying our procedure gives the expected answer, as shown below.∫

A

dx dy =

∫ 2π

0

∫ r̄

0

r dr dθ =

∫ 2π

0

r̄2

2
dθ =

r̄2

2

∫ 2π

0

dθ = πr̄2

There is one subtlety. Let us recall when we first met the complex field in Section 5.3. We made

the choice of i :=

(
0 1
−1 0

)
. Suppose someone else decided to define i :=

(
0 −1
1 0

)
, a perfectly

reasonable choice. As we discussed before, their Argand diagram would have the opposite imaginary
axis compared to ours. This means that their polar coordinate is given by the transformation rule
x = r cos θ and y = −r sin θ. Their partial derivatives of the transformations will be given by

∂rg1 = cos θ, ∂θg1 = −r sin θ, ∂rg2 = − sin θ, ∂θg2 = −r cos θ

and so

dx dy = (∂rg1∂θg2 − ∂θg1∂rg2) dr dθ = (−r cos2 θ − r sin2 θ) dr dθ = −r dr dθ.

Therefore, using our algebraic rules from Equation A.4, they will calculate the area of a circle of
radius r̄ to be∫

A

dx dy =

∫ 2π

0

∫ r̄

0

(−r) dr dθ = −
∫ 2π

0

r̄2

2
dθ = − r̄2

2

∫ 2π

0

dθ = −πr̄2?!
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A circle having negative area is absurd, and they did everything correctly! This means that the
algebraic rule from Equation A.4 must be modified to:

(αdx+ β dy)(γ dx+ δ dy) = |αδ − βγ|dx dy.

Let us review what we have found. If we wish to calculate an integral
∫
A
f(x, y) dx dy, we can

instead do a change of variables x = g1(u, v) and y = g2(u, v) to calculate a new integral over the
corresponding region Ã in u, v space (in our case, it was polar coordinates with the variables r and
θ). This is the change of variables formula in two dimensions:∫

A

f(x, y) dx dy =

∫
Ã

f
(
g1(u, v), g2(u, v)

)
|∂ug1∂vg2 − ∂vg1∂ug2| du dv. (A.7)

We can tidy up our formula. Each transformation x = g1(u, v) and y = g2(u, v) are real valued
functions of two variables. Let us take the gradients of each function and stack their transpose

together to obtain the Jacobian matrix g′ for the transformation g(u, v) :=

(
g1(u, v)
g2(u, v)

)
, defined

by

g′ :=

(
(∇g1)

t

(∇g2)
t

)
=

(
∂ug1 ∂vg1
∂ug2 ∂vg2

)
.

Observe that the expression inside the absolute values of Equation A.7 is the determinant of the
Jacobian matrix!4 Furthermore, the region A and Ã have the relationship A = g(Ã). We will
rename Ã with A and write the change of variables formula in two dimensions as:∫

g(A)

f(x, y) dx dy =

∫
A

(f ◦ g)(u, v) |det g′| du dv. (A.8)

Challenge 37 Why is the Jacobian matrix of function g denoted as if it was the derivative of g?
For a Jacobian matrix of dimension 1× 1, the concepts do coincide, and the Jacobian matrix g′ is
the same as the derivative. For this Challenge only, we will work with the complex numbers.

(a) The complex function f : z 7→ z maybe interpreted as a function of two real variables that

outputs two real numbers by representing f as f(x, y) =

(
x
y

)
where x := Re z and y := Im z.

Calculate the Jacobian matrix f ′ and interpret the real matrix as a complex number.

(b) We can represent the complex function g : z 7→ z2 by g(x, y) =

(
x2 − y2

2xy

)
where x := Re z

and y := Im z. Calculate the Jacobian matrix g′ and interpret the real matrix as a complex
function. Is it as you expected?

(c) We may think of the Jacobian matrix f ′ as the matrix representation of the derivative of
function f . If f is a complex-valued function, then its Jacobian matrix must have the form(

x y
−y x

)
because the derivative better be complex! Conclude that a complex-valued function

f(x+ iy) := u(x, y)+ iv(x, y) for real x and y is differentiable if the following equations hold.

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (A.9)

Equations A.9 are called the Cauchy-Riemann equations.

4The determinant of a Jacobian matrix is called the Jacobian.
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Challenge 38 We generalize to functions of three variables.

(a) Use our rules for the symbols d□ to obtain the relations

dx dy = −dy dx, dx dz = −dz dx, dy dz = −dz dy.

(b) Use part (a) to conclude that

dx dy dz = −dy dx dz = dy dz dx = −dz dy dx = dz dx dy = −dx dz dy.

(c) Calculate du dv dw where du := ∂xg1 dx+∂yg1 dy+∂zg1 dz, dv := ∂xg2 dx+∂yg2 dy+∂zg2 dz,
and dw := ∂xg3 dx+∂yg3 dy+∂zg3 dz. There are six terms because (dx)2 = (dy)2 = (dz)2 = 0.
Don’t forget to put the coefficients inside an absolute value to prevent negative volumes arising
because of the conversion factor.

(d) Define

g(u, v, w) :=

g1(u, v, w)
g2(u, v, w)
g3(u, v, w)

 and g′ :=

(∇g1)
t

(∇g2)
t

(∇g3)
t

 .

The Jacobian matrix g′ is a matrix of dimension 3 × 3. The determinant of a matrix of
dimension 3× 3 is defined to be

det

a b c
d e f
g h i

 := aei− afh+ bfg − bdi+ cdh− ceg.

The determinant here is also defined such that a 3× 3 matrix is invertible if its determinant
is nonzero. Conclude that the change of variables formula in three dimensions is given by∫

g(A)

f(x, y, z) dx dy dz =

∫
A

(f ◦ g)(u, v, w)|det g′| du dv dw.

Calculating the integral

Finally at last, we will calculate the integral.5

Theorem 36. ∫ ∞

−∞
e−x2

dx =
√
π.

Proof. Since e−x2

is even, if I :=
∫∞
0

e−x2

dx, then
∫∞
−∞ e−x2

dx = 2I. The trick is to calculate I2:

I2 = I

∫ ∞

0

e−y2

dy =

∫ ∞

0

Ie−y2

dy =

∫ ∞

0

(∫ ∞

0

e−x2

dx

)
e−y2

dy.

Since e−y2

is a constant with respect to the variable x, we push it in:

I =

∫ ∞

0

∫ ∞

0

e−x2

e−y2

dx dy =

∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy.

5This integral can also be calculated using differentiation under the integral sign. I encourage you to look it up!
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We are integrating over the region where x ≥ 0 and y ≥ 0. Each point in this region corresponds
to the polar coordinate (r cos θ, r sin θ) where r ≥ 0 and θ ∈ [0, π/2] (angle θ is between 0 and the
right angle). From Equation A.6 we know that dx dy = r dr dθ.

We make the change of variables x2 + y2 7→ r2 use the change of variables formula to get

I2 =

∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy =

∫ π/2

0

∫ ∞

0

e−r2r dr dθ.

Since (−e−r2/2)′ = e−r2r (clean and simple!), we have

I2 =

∫ π/2

0

∫ ∞

0

e−r2r dr dθ =

∫ π/2

0

(
−1

2
e−r2

∣∣∣∣∞
r=0

)
dθ.

Since limr→∞ er
2

=∞, we know that limr→∞ e−r2 = limr→∞ 1/er
2

= 0. Therefore,

I2 =

∫ π/2

0

(
−1

2
e−r2

∣∣∣∣∞
r=0

)
dθ =

∫ π/2

0

(
0 +

e0

2

)
dθ =

1

2

∫ π/2

0

dθ =
π

4
.

We conclude that ∫ ∞

−∞
e−x2

dx = 2I = 2

√
π

2
=
√
π

as desired.

Applying the substitution rule with the substitution x 7→ x/
√
a for positive a gives∫ ∞

−∞
e−ax2

dx =

√
π

a
.
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Coefficient, 16
Completeness, 32
Complex Conjugate, 85
Conservative Force, 69
Constant Rule, 13, 22
Continuity

Definition, 55
Continuous, 30
Coulomb’s Law, 98

de Moivre’s Formula, 92
Definite Integral, 38
Derivative, 19

Uniqueness, 21
Using Dual Numbers, 24

Determinant, 84
Diameter, 99
Differentiable

Using Dual Numbers, 24
Differential Equation, 67
Dimension, 8
Dimensional Analysis, 8
Dimensionful, 43
Dimensionless Constant, 7
Dual Number, 24

Energy
Kinetic, 68
Mechanical, 69
Potential, 68

Euclidean Space, 74
Euler’s Formula, 92
Exponential

Matrix, 91
Exponential Function, 49
Exponentiation, 6

Field, 84
Complex, 84

Fine-Structure Constant, 99
Free Particle, 95
Function, 4

Absolute Value, 25
Bounded, 34
Complex Valued, 86
Composition, 27
Continuous, 30

Cosine, 92
Differentiable, 19
Even, 50
Odd, 50
Positive, 46
Real Valued, 86
relu, 29
Sine, 92
Strictly Positive, 55
Tangent, 92

Fundamental Theorem of Calculus
First, 37
Second, 39

Gamma Function, 103
Gaußian Integral, 102
Gradient, 77

Hamilton–Jacobi Equation, 93
Hamiltonian, 72

Quantum, 90
Harmonic Oscillator, 69
Homogeneity, 25
Hooke’s Law, 69
Hydrogen Atom, 97
Hypotenuse, 42

Identity Matrix, 80
Indefinite Integral, 38
Infimum, 32
Integer, 5
Integral, 38

Definite, 38
Improper, 103
Indefinite, 38

Integration by Parts, 40
Interval, 34

Closed, 34
Finite, 34
Half Open, 34
Open, 34

Jacobian, 107
Joule, 5

Kiloton, 5

Limit
Above, 64
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Below, 65
Definition, 55
Product Rule, 57
Quotient Rule, 60
Sum Rule, 57
Uniqueness, 56

Linear Combination, 75
Linearity, 74
Little oh, 63
Logarithm Function, 48
Lower Bound, 31

Greatest, 32

Mass, 67
Matrix, 75

Addition, 83
Complex, 87
Conjugate Transpose, 88
Dimension, 75
Hermitian, 88
Inverse, 83
Multiplication, 79
Real, 87
Transpose, 87
Unitary, 88

Momentum, 68
Multiplicative Inverse, 84

Newton’s Second Law, 67
Number

Complex, 82
Imaginary, 82
Natural, 5
Rational, 32
Real, 32

Partial Derivative, 77
Phase Space, 70
Pigeonhole Principle, 9
Planck Constant, Reduced, 90
Polynomial, 16
Power Rule, 16, 52
Product Rule, 14, 22
Pythagorean Theorem, 43

Quadratic Formula, 101
Quotient Rule, 15, 23, 62

Radius, 4
Reciprocal Rule, 23, 62
Reference point, 68

Scalar, 73, 84
Scalar Multiplication, 73
Schrödinger Equation, 90

One-dimensional, 91
Semicircle, 44
Set, 32

Bounded, 32
Element of, 32

Signature
Song, 9

Slope, 42
Solid of Revolution, 47
Square Root, 7
Squeeze Theorem, 65
Subset, 66
Substitution Rule, 41
Subtraction Rule, 13
Sum Rule, 13, 22
Summation Notation, 17
Superposition, 95
Superposition Principle, 95
Supremum, 32

Translation
Spatial, 70
Time, 72

Triangle Inequality, 25

Unit Circle, 44
Upper Bound, 32

Least, 32

Vector, 72
Concatenation, 75
Dimension, 72

Wave Equation, 95
Wavefunction, 95
Well-Ordering Principle, 16
Work, 68

Zero Matrix, 80
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