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DRAFT
Preface

And you will realize the truth, and it shall make you free.

— John 8:32
This book provides an efficient introduction to the essentials of calculus needed for further

studies in mathematics (real analysis, abstract algebra, point set topology), physics (especially
quantum mechanics), and other quantitative fields such as economics or computer science. The
only necessary background is proficiency in grade school arithmetic. If you can work through the
arithmetic review in Chapter 1, then you are ready to tackle the rest of the book.

what︷    ︸︸    ︷
Calculus Done Right︸        ︷︷        ︸

how

The emphasis throughout is on exposing the simplicity that lies at the core of the subject. In
particular, calculus really is the simplest thing one could come up with to create an arithmetic of
velocities and displacements!

𝑖ℏ
d
d𝑡 |Ψ⟩ = 𝐻 |Ψ⟩ ∇ · 𝑬 = 𝜌/𝜖0 ∇ × 𝑬 = −𝜕𝑡𝑩 ∇ · 𝑩 = 0 ∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜖0𝜕𝑡𝑬

Now, a language embeds aspects of its background and culture. Concepts that are intimately
expressed in a single word in one language may need several tomes to spell out in another.
Calculus is no different, and we will see that making the simplest of extensions will lead us
to Schrödinger’s equation and the probabilistic quantum world. When we discuss multivariable
calculus, we will similarly be lead to Maxwell’s equations, where our attempt to make sense of
its most straightforward consequence will lead us to special relativity and a radical rethinking of
space and time.

So simple that you could have made these discoveries yourself. Let us begin!

Dayeol Choi

iii
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1

Arithmetic

Let’s start at the very beginning. If you are confident in your abilities in arithmetic and basic
algebra, feel free to jump ahead to Chapter 2. What is 1 + 1? It doesn’t get any easier than that.
Of course the answer to 1 + 1 is 2. Now, these numbers must mean something. For example, we
might be counting the number of apples in a pantry, and we observe that there is one apple next
to another apple, and so we conclude that there are 2 apples.

Very good, 1 + 1 = 2 and in particular 1 apple + 1 apple = 2 apples. If 1 + 1 = 2, what is the
answer to 1 apple+ 1 orange? Since 1+ 1 = 2, do we conclude the answer is 2? No, because we are
trying to add apples to oranges. When we say 1 + 1 = 2, we are assuming that each quantities are
compatible. Thus the answer to 1 apple + 1 orange is that the sum is unresolvable.1 An analogous
question would be: what is 1 meter plus 1 second? Once again, such questions cannot be answered
as their units do not match. Units matter, and we will draw on this key insight over and over again.

1.1 Units

All physical theories must have something to say quantitatively about the world around us. In
order to communicate coherently about real world objects, we must agree on a set of units. For
example, the distance from one café to another might be 50 meters. Or is it 164 feet?

This is one case where trying to please everyone turns out to be helpful. In order to make
everyone happy, let us agree to refer to all sorts of distance measurements as a Length. Thus the
height of a building and the distance from the earth to the sun are both instances of Lengths.

Now, in order to indicate speed, we usually divide something by time. For example, 6 slices
of pizzas per hour might mean the speed at which pizza slices were consumed. Similarly, the
distance from the earth to the sun, divided by the time it takes for light to hit the earth from the
sun indicates the speed of light. Thus dividing a length by time gives us speed:

Length
Time = Speed.

Some like to use seconds to measure time, others like to use hours; we will call all time measure-
ments Time. Suppose I ate 6 slices of pizza per hour for 2 hours. Then, I ate a total of: 6 slices/hour

1If you think there is another possible answer, you are right! We will return to this point later.

1



DRAFT
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× 2 hours = 12 slices. If we multiplied the speed of light by 1 year, which is a Time, then

Length
���Time︸   ︷︷   ︸

speed of light

× ���Time︸︷︷︸
1 year

= Length.︸   ︷︷   ︸
one lightyear

Another fundamental type of measurement is mass, which for now we will use interchangeably
with weight. Some folks use kilograms, others use pounds. We will refer to these as Mass.

Einstein told us that Energy is mass times the speed of light squared. In symbols, this is
𝐸 = 𝑚𝑐2, where 𝐸 is energy, 𝑚 is mass, and 𝑐 is the speed of light. Notice that when using symbols,
we omit the × symbol. Thus 𝐸 = 𝑚𝑐2 means 𝐸 = 𝑚 × 𝑐2, which in turn means 𝐸 = 𝑚 × 𝑐 × 𝑐. Since
𝑚 is a Mass and 𝑐 is Length divided by Time (speed),

Energy = Mass ×
(
Length
Time

)2

= Mass ×
Length
Time ×

Length
Time

= Mass ×
Length2

Time2 .

base

height
side

Figure 1.1: A cube with a base, side, and height.

Here is my first challenge for you. The main challenge with this one is getting your pencil and
paper out. Later ones may not be this easy!
Challenge 1

(a) We can simplify arithmetic expressions using cancellation. For example,

5 × 10 × 3
3 × 2 × 2 =

5 × 10 × �3
�3 × �2

× �2 = 5 × 10.

Try simplifying the following expressions. By convention, 22 = 2 × 2 and 53 = 5 × 5 × 5.

55 × 3
53

55 × 3
53

22

(b) A volume of a cube is the base of the cube multiplied by the side of the cube and the hight
of the cube (see Figure 1.1). A density of a substance is its Mass divided by volume. Use
cancellation to simplify the following expression as much as possible. Do you recognize it?

Length5 × density
Time2 .
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(c) Remember that we cannot add apples to oranges. Thus the mathematical expression

2 oranges + 3 apples

makes no sense. Similarly, we cannot add a Length to Time. Identify which of the following
arithmetic expressions are valid:

Length5 × density
Time2 +

Length
Time ,

Length5 × density
Time2 + Energy,

Length5 × density
Time2 +

Energy2

Time .

What we have found in Challenge 1 is that the laws of nature are constrained rather strongly.
For example, if Einstein told us 𝐸 = 𝑚𝑐 + 𝑚/𝑐 or 𝐸 = 𝑚 + 𝑐2, there’s no way either could be true
because the units cannot match. Let’s put this idea into use.

Below is an image of the Trinity nuclear test, the first detonation of a nuclear weapon in history.

Figure 1.2: Courtesy of US Government Defense Threat Reduction Agency, successor agency to the
Manhattan Project.

As we can see from the test image, the energy from the bomb is released in what appears to be a
spherical blast. The radius of a sphere is the distance from the center of the sphere to its boundary.
Thus radius is a Length. The radius of the blast (let’s label this with the letter 𝑅) will be proportional
to the energy of the bomb (we’ll refer to this with the letter 𝐸), and the Time since blast, 𝑡.2 If the
bomb was surrounded by dense material, such as concrete and steel, we’d imagine the blast radius
will be smaller. On the other hand, if the bomb was surrounded by less dense material like air, the
blast radius will be larger. We will refer to the density of the surrounding material with the Greek
letter 𝜌 (rho). Below is a table summarizing what we have. Later on, we will use the shorthand
appearing in the fourth column to save on space. As is customary when using symbols, ML2/T2

omits the ‘×’ symbol.

2Within seconds of the blast, a larger value of 𝑡 will lead to a larger blast radius 𝑅.
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variable meaning unit type unit shorthand
𝑅 Radius (of a Blast) Length L
𝐸 Energy (of a Bomb) Mass ×Length2

Time2 ML2/T2

𝑡 Time passed Time T
𝜌 Density (of the surrounding) Mass/Length3 M/L3

A function is object that takes in an input and yields an output. For example, if 𝑓 : 𝑥 ↦→ 2𝑥, then
the function 𝑓 takes in a number 𝑥 and returns 2𝑥. We need some predictability, thus whenever we
input the same value to a function, the function is required to return the same output. A function
can sometimes be represented as a formula. For example, our function 𝑓 can also be written as
𝑓 (𝑥) = 2𝑥, where the left side of the equation is a formula to the function on the right side.

What we would like to know is the simplest formula for the energy of a bomb 𝐸, given that
we know its blast radius 𝑅 at time 𝑡 with surrounding material density 𝜌 (there could be other
contributing factors, but the ones we have written down look like they are the most important).
From Challenge 1, we know that there is a simple formula to express such cases. Since

Energy =
Length5 × density

Time2

we see that energy 𝐸 must be proportional to 𝑅5𝜌
𝑡2

, by considering the units involved. I say
proportional to, because the simplest formula for energy 𝐸 could be

𝐸 = 3
𝑅5𝜌

𝑡2
, or 𝐸 = 3.14

𝑅5𝜌

𝑡2
, or 𝐸 = 5

𝑅5𝜌

𝑡2
, or . . . .

We cannot rule out any such possibilities because a number itself has no units. 5 meters is a Length
with a unit of meter, but the number 5 has no units. We call the numbers 0, 1, 2, 3, 4, . . . that
we use to count, the natural numbers. The integers are those numbers consisting of the natural
numbers and its negative counterparts −1,−2,−3, . . . (the convention is that −0 = 0). The numbers
1, 2, 3, . . . are also called positive integers.

We make explicit our ignorance by including a number 𝛽, as shown below. Without additional
information, we cannot know 𝛽, only that it has no units.

𝐸 = 𝛽
𝑅5𝜌

𝑡2
(1.3)

Challenge 2
(a) Since we do not know what 𝛽 is, let us assume 𝛽 = 1 for now. Does Equation 1.3 make

sense? Is an increase in blast radius associated with more energy? If we had a very dense
surrounding material (thus a high density 𝜌), what would that tell us about the energy? What
if the time to reach a specific blast size was smaller, what would that tell us about energy 𝐸?

(b) Using a calculator, the nuclear test image, and Equation 1.3 with 𝛽 = 1, estimate the energy
released by the trinity experiment. We will use meters (m) for radius 𝑅, kg/m3 for density 𝜌,
and seconds (s) for time 𝑡. Thus 𝐸 has the unit kg·m2/s2.3 Just eyeball the value for radius 𝑅,
and use the fact that air density 𝜌 is about 1kg/m3.

3The · is a shortened form of ×. We need a multiplication symbol because units aren’t always single letters.
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(c) The unit of energy kg·m2/s2 is called a joule (symbol J). The standard convention for explosive
energy released by a fission weapon like Trinity is thousands of tons of TNT, called kilotons.
Using the fact that 4.2 × 109 joules is about 1 ton of TNT, convert your answer in part (b) into
kilotons. This is just an estimate, feel free to round to the nearest kiloton.

(d) Look up the yield of the Trinity nuclear test online and compare with your result from (c).
Use it to find the number 𝛽, rounding to the nearest integer.4

I hope that Challenge 2 gives a first indication that arithmetic is more than what we punch into
calculators. Our next step is to figure out how we can obtain the formula

𝐸 =
𝑅5𝜌

𝑡2

in the first place. To do this, we will need to review a bit of multiplication.

1.2 Exponentiation

The multiplication 13 · 9 can be done relatively easily in our heads if we remember that

13 · 9 = (10 + 3) · 9 = 10 · 9 + 3 · 9 = 90 + 27.5

Since 13 · 9 = 9 · 13, an entirely equivalent calculation is

13 · 9 = 9 · 13 = 9 · (10 + 3) = 9 · 10 + 9 · 3 = 90 + 27.

In order to make general mathematical statements, we will almost always use symbols in place of
numbers, just like we used 𝑅 to refer to a radius (of a blast). Suppose we have three numbers on
hand which we denote by the letters 𝑎, 𝑏, and 𝑐. Then the above calculations may be expressed as

(𝑎 + 𝑏) · 𝑐 = 𝑎 · 𝑐 + 𝑏 · 𝑐 and 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐.
We will usually skip the ‘·’ when using symbols and we will write the above as (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐
and 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐. Thus 𝑎(𝑏 + 𝑐 + 𝑑) = 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 and (𝑖 + 𝑗 + 𝑘 + 𝑙)𝑧 = 𝑖𝑧 + 𝑗𝑧 + 𝑘𝑧 + 𝑙𝑧.
Challenge 3

(a) Use the fact that (𝑎+𝑏)(𝑐+𝑑) = 𝑎𝑐+𝑎𝑑+𝑏𝑐+𝑏𝑑 to show that (10+𝑥)(10+𝑦) = 10·(10+𝑥+𝑦)+𝑥𝑦.
We will apply it and a slightly tweaked version of it in part (b).

(b) Do the multiplication 16 · 14 in your head. Next, do the multiplication 116 · 114 in your head.
Now that we have reviewed the multiplication of two numbers, let us review the multiplication

of a finite collection of numbers. We know that 1000 = 10 · 10 · 10 and 10000 = 10 · 10 · 10 · 10. As a
convenient notation, let us agree to write 1000 = 103 and 10000 = 104 instead. Similarly, 0.1 = 1/10
is written as 10−1, which means that 0.0001 = 0.1 ·0.1 ·0.1 ·0.1 = 10−4. This bookkeeping convention
is called exponentiation and we typically indicate this using the word power. For example, 104 is
10 to the power of 4 and 10−4 is 10 to the power of −4. The number we are exponentiating is called
the base. Thus 10 is the base of both 104 and 10−4.

Below are the exponentiation rules. The letters 𝑎 and 𝑑 are positive integers which we use as
bases. The letter 𝑏 and 𝑐 are the powers and they could be integers or fractions of nonzero integers.

4G.I. Taylor was one of the first outside the Manhattan Project’s core group to estimate the yield of Trinity based on
blast photos. This was in 1950 when not only was Trinity’s yield a Top Secret, but only one country in the world had any
nuclear arsenal. G.I. Taylor did not use dimensional analysis to obtain his results.

5From now on, we will prefer using the symbol · instead of ×.
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• 𝑎0 = 1 as in 30 = 1 and Length0 = 0.

• 𝑎−𝑏 =
1
𝑎𝑏

as in 8−1 = 1
8 and Time−2 = 1

Time2 .6

• 𝑎𝑏 · 𝑎𝑐 = 𝑎𝑏+𝑐 as in 62 · 65 = 67 and Mass3·Mass−4 = Mass−1.

• (𝑎 · 𝑑)𝑏 = 𝑎𝑏 · 𝑑𝑏 as in (2 · 5)4 = 24 · 54 and (Mass · Time)2 = Mass2 · Time2.

• (𝑎𝑏)𝑐 = 𝑎𝑏𝑐 as in (2−3)4 = 2(−3)·4 = 2−12 and (Length2)4 = Length8.

When the fraction 1
2 is used as a power, the number 𝑎1/2 is usually written

√
𝑎. Thus, the exponen-

tiation rules allow us to write the following.

53/2 = (53)1/2 =
√

53

More generally, for each positive integer 𝑛, one sees 𝑎1/𝑛 written as 𝑛√
𝑎, called the 𝑛th root. For

example, 31/5 =
5√3. The 2nd root is usually called the square root, thus

√
53 is the square root of

53. The key take away from fractional powers is that using the fifth exponentiation rule:(
𝑎𝑝/𝑞

) 𝑞
= 𝑎(𝑝/𝑞)·𝑞 = 𝑎𝑝

where 𝑎 is not a negative number and 𝑝, 𝑞 are positive integers. For example,
(
545/3)3

= 545.

Simultaneous equations
We are now ready to obtain a formula for the nuclear blast yield. For reasons that will be clear

much later, we will first calculate a formula for the radius of a nuclear blast. Hence, we will first
find how the radius of a nuclear blast 𝑅 is related to the energy of a bomb 𝐸, time since blast 𝑡, and
surrounding material density 𝜌.

As we have seen before, equations such as

𝑅 = 𝐸 + 𝑡 + 𝜌 or 𝑅 = 𝐸 + 𝑡 · 𝜌

are not possible because the units don’t match. For example, in the former case we know that it
makes no sense to add energy to time and density. On the other hand, the simplest formula that
could work is

𝑅 = 𝑑 · 𝐸𝑎 · 𝑡𝑏 · 𝜌𝑐 , (1.4)

where 𝑎, 𝑏, 𝑐, and 𝑑 are unknown numbers. The first three are the ones we use to make the units
match in both sides of the equation. The number 𝑑 on the other hand has no units; such numbers
are called dimensionless constants. The number 𝛽 in Equation 1.3 was a dimensionless constant.

6From this rule it follows that if 𝑎 is nonzero, then 𝑏
1/𝑎 = 𝑎𝑏. As an example, if we divide three pizzas, each into eight

slices, then there will be twenty four slices: 3
1/8 = 3 · 8 = 24.
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For instance, notice that 𝑅 is a length, so it has no units of time T.7 However, on the right side
of Equation 1.4, the variables 𝐸 and 𝑡 include the unit T. This means we need to find numbers 𝑎
and 𝑏 such that the unit T cancels out. Similarly, the radius 𝑅 is independent of mass M. But the
variables 𝐸 and 𝜌 have unit M. So we will have to find 𝑎 and 𝑐 that cancels out the unit M.

To proceed, let us convert Equation 1.4 into an equation consisting soley of units. Since the
number 𝑑 has no units, we’ll put it aside for now. Using our table of units from earlier, we can
write

L =

(
ML2

T2

) 𝑎
· T𝑏 ·

(
M
L3

) 𝑐
.

We use the exponentiation rules from before to simplify the right side of the equation above as(
ML2

T2

) 𝑎
· T𝑏 ·

(
M
L3

) 𝑐
=

M𝑎L2𝑎

T2𝑎 · T
𝑏 · M𝑐

L3𝑐 = M𝑎 ·M𝑐 · T𝑏

T2𝑎 ·
L2𝑎

L3𝑐 = M𝑎+𝑐 · T𝑏−2𝑎 · L2𝑎−3𝑐 .

Thus
L = M𝑎+𝑐 · T𝑏−2𝑎 · L2𝑎−3𝑐 or equivalently, M0 · T0 · L1 = M𝑎+𝑐 · T𝑏−2𝑎 · L2𝑎−3𝑐 .

In order to make this equality hold, we need to set the power of M at 𝑎 + 𝑐 = 0, the power of T
at 𝑏 − 2𝑎 = 0, and the power of L at 2𝑎 − 3𝑐 = 1.

The first requirement tells us that 𝑎 = −𝑐. Hence 2𝑎 = −2𝑐, and plugging this into the third
requirement, we have 1 = 2𝑎 − 3𝑐 = −5𝑐. Thus 𝑐 = −1/5 and 𝑎 = 1/5. The only thing left is to find
𝑏, so let us look at the second requirement: 𝑏 − 2𝑎 = 0, which is equivalent to 𝑏 = 2𝑎 (by adding 2𝑎
to both sides). Since 𝑎 = 1/5, we have 𝑏 = 2𝑎 = 2/5. Therefore,

𝐿 =

(
ML2

T2

)1/5
· T2/5 ·

(
M
L3

)−1/5
,

or in our original equation form
𝑅 = 𝑑 · 𝐸1/5 · 𝑡2/5 · 𝜌−1/5.

We now know the relationship between, say, the energy contained in a nuclear bomb and its
blast radius. Let us invert the relationship so that we have energy 𝐸 expressed as a combination of
𝑅, 𝑡 and 𝜌. Taking the power of 5 to both sides, we get

𝑅5 = 𝑑5 · 𝐸 · 𝑡
2

𝜌
.

Now multiply each side by 𝜌
𝑑5·𝑡2 and let 𝛽 := 1/𝑑5 to get

𝐸 = 𝛽
𝑅5 · 𝜌
𝑡2

, where 𝛽 is a dimensionless constant. (1.5)

Because we are doing arithmetic with units, unit-less numbers (dimensionless constants) cannot
be determined by this procedure. Using some additional information in Challenge 2, we found
out that 𝛽 rounds to 1.

7We are using the unit shorthand: Mass is M, Length is L, and Time is T.
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Although our process for finding Equation 1.5 was fairly long, the main problem was that of
finding three unknown numbers 𝑎, 𝑏, and 𝑐 such that the equations

𝑎 + 𝑐 = 0, 𝑏 − 2𝑎 = 0, and 2𝑎 − 3𝑐 = 1

are all satisfied simultaneously.8
The act of taking a problem, determining the relevant factors and their corresponding units,

and using these to investigate relationships between the factors is called dimensional analysis.9
This is a useful skill, and I will be counting on you to do your own dimensional analysis later on.
Rest assured, all dimensional analysis we will encounter in this book are much simpler than the
Trinity problem.

8There are three equations that must be satisfied, because we need to make sure that the units of mass, length, and
time each match up. Furthermore, there are three unknown numbers (called 𝑎, 𝑏, 𝑐 here) because there are three variables
(energy 𝐸, time 𝑡, and density 𝜌) that form what we want (radius 𝑅).

9Why not call it unit analysis? Because unlike meters, kilograms, and seconds, Length, Mass, and Time are not strictly
speaking, units. We will call these dimensions, hence the name: dimensional analysis.
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Differentiation

2.1 Arithmetic of Velocities

𝑟

𝑎

𝑏

Figure 2.1: A circle of radius 𝑟, and an ellipse of height 2𝑎 and width 2𝑏.

Let us begin with a review of dimensional analysis.1 The formula for an area of a circle of radius
𝑟 is given by 𝜋𝑟2. What if someone told you that the formula is actually 𝜋𝑟3 or 𝜋𝑟? That would
not make any sense, because if the circle had its radius measured in meters, we would expect its
area to have the units of meter2, not meter3 or simply meter. This is the idea behind dimensional
analysis: we check to see if the units make sense.

Since there are many different units in use that are interchangeable, we will refer to meters,
feet, etc by the generic term “Length", and seconds, hours, etc by the generic term “Time".

Now, it is not possible to simply check the units to get the final answer. For example, we can
expect that an area of a circle of radius 𝑟 will be given by a formula proportional to 𝑟2, but we
cannot know the factor 𝜋. Thus we cannot rule out the possibility that the area of a circle is given
by 2𝑟2, to take an example, by only using dimensional analysis. Some additional information
must be available. Numbers like 2 and 𝜋 which have no units, and cannot be figured out with
dimensional analysis are called dimensionless constants. The generic terms “Length" and “Time"
which represent concrete units of measurement are called dimensions. We use dimensions instead
of units because we want the results to be the same, regardless of the exact units we may choose.

1If you are looking for more, see Sanjoy Mahajan’s excellent Street-Fighting Mathematics.

9
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For example, the formula for an area of a circle should stay the same whether we measure radius
in meters or feet.

With this limitation in mind, let us see if we can guess the formula for an area of an ellipse,
a shape shown on the right of Figure 2.1. There are two variables we can work with: 𝑎 and 𝑏,
each of which we will assign the dimension of Length. The formula of an area should have the
form of Length2, and so let us consider the simplest ways we could combine the variables 𝑎 and 𝑏
to get such a combination. There are two such simple possibilities: 𝑐1𝑎𝑏, and 𝑐2𝑎

2 + 𝑐3𝑏
2, where

the numbers 𝑐1, 𝑐2, and 𝑐3 are dimensionless constants.2 Already we can make a simplification.
The area of an ellipse should not depend on the label “𝑎" and “𝑏"—in other words, if we flip the
diagram of the ellipse in Figure 2.1 so that the height is the width and vice versa, then the area
must remain the same, even though 𝑎 and 𝑏 are switched. Therefore, the constants 𝑐2 and 𝑐3 must
be the same.

We can rule out candidate formulas by looking at some simple cases. Consider the extreme
case where 𝑎 := 0 and 𝑏 := 10. Of course, such an ellipse cannot exist in the physical world, but a
formula for an area should capture the fact that such an ellipse will occupy zero area. For the first
candidate, 𝑐1𝑎𝑏 = 𝑐1 · 0 · 10 = 0, which behaves as expected. However, the second candidate fails
unless 𝑐2 = 0, since 0 = 𝑐2𝑎

2 + 𝑐2𝑏
2 = 𝑐202 + 𝑐2102 = 𝑐2102.3

With one candidate left, we guess that an area of an ellipse of height 2𝑎 and width 2𝑏 is given by
the formula 𝑐1𝑎𝑏. This is as far as dimensional analysis will get us. However, we have some extra
information: a circle is an example of an ellipse with 𝑎 = 𝑏. Thus if 𝑎 = 𝑏, our formula for an area
of an ellipse should be 𝜋𝑎2. We therefore conclude that 𝑐1 := 𝜋, and our final guess is that the area
of an ellipse is given by 𝜋𝑎𝑏. We will later verify the correctness of this formula using calculus.

Differentiation Rules

Calculus is like a car, it can get us to places we never thought we could be at, with far less
effort than we would expect. To get somewhere, we need at least two piece of information—how
far away it is, and how long it will take for us to get there. The former pertains to the concept of
displacement needed, while the latter relates to velocity.

Everyone moves about, hence the concept of velocity and displacement are universal. Using
dimensional analysis, we can get a huge mileage out of simply applying arithmetic to units. This
gives us a strong suspicion that applying arithmetic to other objects may turn out to be fruitful. So
here is what we will do. Our goal will be to create an arithmetic of velocities and displacements.
We will begin with velocity, because velocity is necessary to exhibit displacement.

To describe velocity, or any kind of motion, we will use functions. The simplest type of functions
one could think of are those that keep track of an object’s position at each time. The simplest of
such functions will be a position function for an object that stays completely still at a location.
The next simplest would be a position function for an object that moves at a constant velocity of 1
meter/second in one direction. These two functions are graphed below in Figure 2.2. The 𝑥-axis
of a graph denotes the horizontal line used to represent the input variable’s values. In the graphs
below, the 𝑥-axis is used to represent the input variable “time" 𝑡 (measured in seconds). The 𝑦-axis

2We could contemplate formulas like 𝑐4𝑎3/𝑏 + 𝑐5𝑏10/𝑎8 or 𝑐6𝑏2 + 𝑐7𝑎𝑏, but these are not the kind of simple formula we
are looking for. In any case, these can be ruled out using the methods we use below.

3Notice we have replaced the constant 𝑐3 by the constant 𝑐2 because they must have the same value.
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of a graph denotes the vertical line used to represent the output variable’s values. In the graphs
below, the 𝑦-axis is used to represent th output variable “position" 𝑥 (measured in meters).

𝑥 [m]

𝑡 [s]

2

2

𝑓11

1

3
𝑥 [m]

𝑡 [s]

2

2

𝑓2

1

1

3

Figure 2.2: (Left) A position function 𝑓1 of a stationary object at position 0.5 m. (Right) A position
function 𝑓2 of an object moving at a constant velocity of 1 m/s.

The first position function 𝑓1 : 𝑡 ↦→ 0.5, has velocity 0 m/s for all time, while the second position
function 𝑓2 : 𝑡 ↦→ 𝑡, has velocity 1 m/s for all time.4 We will denote the velocity function of
an object by adding a ′ symbol to the object’s position function. Thus we write 𝑓 ′1 : 𝑡 ↦→ 0 or
equivalently 𝑓 ′1(𝑡) = 0 because there is no motion in our first object, and so the velocity function
of 𝑓1 always outputs zero. We say that 𝑓 ′1 is the zero function. Even if our stationary object was
placed somewhere else, thus shifting our graph of 𝑓1 up or down, it will still be the case that 𝑓 ′1 is
the zero function. Thus if a function 𝑓 is a constant function that outputs the same value for each
input 𝑡, then

Constant Rule: 𝑓 ′ : 𝑡 ↦→ 0. 5

On the other hand, 𝑓 ′2(𝑡) = 1, because the velocity function of 𝑓2 always outputs 1 (m/s).

Sum rule

We now turn to arithmetic. First, let us try addition. What can dimensional analysis tell us
about ( 𝑓 + 𝑔)′? Taking 𝑓 and 𝑔 to be position functions as above, we see that their sum 𝑓 + 𝑔 will
have outputs of dimension Length. A velocity function ( 𝑓 + 𝑔)′will then have outputs of dimension
Length/Time. The simplest formula that achieves this is the formula ( 𝑓 + 𝑔)′ = 𝑐1 𝑓

′ + 𝑐2𝑔
′. The

order in which we take the addition should not change the result, so we note that 𝑐1 = 𝑐2. Like
in the case of the ellipse, we can conjure up an example to help us determine the dimensionless
constant 𝑐1. Take 𝑓 to be the zero function so that 𝑓 ′ = 0 and 𝑓 + 𝑔 = 0 + 𝑔 = 𝑔. Hence,
𝑔′ = ( 𝑓 + 𝑔)′ = 𝑐1 𝑓

′ + 𝑐1𝑔
′ = 0 + 𝑐1𝑔

′ = 𝑐1𝑔
′. We see that the constant 𝑐1 is 1, and we have the sum

rule.
Sum Rule: ( 𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′.

For subtraction, define the function ℎ : 𝑡 ↦→ −𝑔(𝑡) that flips the sign of the outputs of function 𝑔.
Applying the sum rule gives ( 𝑓 − 𝑔)′ = ( 𝑓 + ℎ)′ = 𝑓 ′ + ℎ′ = 𝑓 ′ + (−𝑔′) = 𝑓 ′ − 𝑔′.

Subtraction Rule: ( 𝑓 − 𝑔)′ = 𝑓 ′ − 𝑔′.

4The notation 𝑓1 : 𝑡 ↦→ 0.5 means the function 𝑓1 turns each input 𝑡 into 0.5. It is equivalent to writing 𝑓1(𝑡) = 0.5.
Similarly, 𝑓2 : 𝑡 ↦→ 𝑡 means the function 𝑓2 takes each input 𝑡 and outputs 𝑡. It is also written 𝑓2(𝑡) = 𝑡.

5This can also be written 𝑓 ′(𝑡) = 0, or equivalently as 𝑓 ′ = 0.



DRAFT
12 CHAPTER 2. DIFFERENTIATION

Product rule

Next, we consider products of position functions 𝑓 and 𝑔. Now, taking a product of position
functions is a little weird. For one thing, if function ℎ is the product of the position function 𝑓 and
𝑔, then the ouputs of ℎ will have dimension Length2 (same as an area function), so ℎ is no longer a
position function. This means that it is odd to speak of a velocity function of ℎ. Nevertheless, we
can still talk about the rate of change of functions, so instead of speaking about velocity functions,
we will speak of derivatives. Suppose we have a function that takes inputs with dimension ♦ and
outputs quantities of dimension ♥. Then the rate of change (the derivative) of the function as we
vary inputs (of unit ♦) will have the dimension ♥/♦. For example, consider a position function
whose input is of dimension Time and output is of dimension Length. Its derivative will have
dimension Length/Time, just as we expect from a velocity function.6

We will write 𝑓 𝑔 to mean the product of functions 𝑓 and 𝑔. That is, the function 𝑓 𝑔 takes an
input 𝑡 and outputs 𝑓 (𝑡) · 𝑔(𝑡).7 If the dimension of 𝑓 𝑔 is Length2 and the dimension of the inputs
of 𝑓 𝑔 is time, then the derivative ( 𝑓 𝑔)′ will have dimension Length2/Time.

Immediately, we see that the formula for ( 𝑓 𝑔)′ cannot be of the form 𝑐 𝑓 ′𝑔′ for some dimen-
sionless constant 𝑐. This is because 𝑐 𝑓 ′𝑔′ has the dimension Length2/Time2, which has an extra
division by Time. Instead, the simplest ways we can use the functions 𝑓 , 𝑓 ′, 𝑔, 𝑔′ and combine
them to get dimension Length2/Time are the following three options.

( 𝑓 𝑔)′ = 𝑐1( 𝑓 2)′ + 𝑐2(𝑔2)′ ( 𝑓 𝑔)′ = 𝑐3 𝑓 𝑓
′ + 𝑐4𝑔𝑔

′ ( 𝑓 𝑔)′ = 𝑐5 𝑓
′𝑔 + 𝑐6 𝑓 𝑔

′

The product function 𝑓 𝑔 is the same as the product function 𝑔 𝑓 because the order of multiplication
does not matter. Since the labels 𝑓 and 𝑔 are interchangeable, we have 𝑐1 = 𝑐2, 𝑐3 = 𝑐4, and 𝑐5 = 𝑐6.

Recall that we were able to narrow down the options when guessing a formula for an area of an
ellipse by considering an ellipse with 0 thickness. We can also narrow down our current options
by considering the case where 𝑓 is the zero function. Then ( 𝑓 𝑔)(𝑡) := 𝑓 (𝑡)𝑔(𝑡) = 0𝑔(𝑡) = 0, and
since 𝑓 𝑔 is a constant function, the derivative function ( 𝑓 𝑔)′ must be the zero function. This fails
to be captured by the first two options: 𝑐1( 𝑓 2)′ + 𝑐1(𝑔2)′ and 𝑐3 𝑓 𝑓

′ + 𝑐4𝑔𝑔
′, because we may choose

the function 𝑔 so that each expressions are not the zero function. The only possibility left is the
formula ( 𝑓 𝑔)′ = 𝑐5 𝑓

′𝑔 + 𝑐5 𝑓 𝑔
′.

Once again we will examine a simple case to find the dimensionless constant 𝑐5. Define 𝑓 to be
the function 𝑡 ↦→ 𝑡 and let 𝑔 := 1, the constant function 𝑡 ↦→ 1. Then ( 𝑓 𝑔)(𝑡) := 𝑓 (𝑡)𝑔(𝑡) = 𝑡 · 1 = 𝑡,
and so ( 𝑓 𝑔)′ = 1. On the other hand, since 𝑓 ′ = 1 and 𝑔′ = 0, we find that

1 = ( 𝑓 𝑔)′ = 𝑐5 𝑓
′𝑔 + 𝑐5 𝑓 𝑔

′ = 𝑐5 · 1 · 1 + 𝑐5 · 𝑡 · 0 = 𝑐5 + 0 = 𝑐5.

Therefore, the dimensionless constant 𝑐5 is one, and we have the product rule:

Product Rule: ( 𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′.

Finally, we discuss the division operation. Consider two functions 𝑓 and 𝑔. Suppose 𝑔(0) = 0;
then 𝑓 (0)/𝑔(0) is undefined, and so 𝑓 /𝑔 cannot be defined. We cannot divide function 𝑓 by function

6We will equate a function’s dimension with the dimension of the function’s outputs.
7More succinctly, 𝑓 𝑔 : 𝑡 ↦→ 𝑓 (𝑡)𝑔(𝑡), or equivalently, ( 𝑓 𝑔)(𝑡) := 𝑓 (𝑡)𝑔(𝑡).
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𝑔 if 𝑔 outputs the value 0 at any point in time. To prevent this, we will need to assume that 𝑔 is
always nonzero, so that for each 𝑡, the value 1/𝑔(𝑡) is defined. By cancellation, the product function(
𝑓

𝑔

)
𝑔 = 𝑓 . Apply the product rule to the product function

(
𝑓

𝑔

)
𝑔 to get

𝑓 ′ =

( [
𝑓

𝑔

]
𝑔

) ′
=

(
𝑓

𝑔

) ′
𝑔 +

(
𝑓

𝑔

)
𝑔′.

This gives us an equation 𝑓 ′ =
(
𝑓

𝑔

) ′
𝑔 + 𝑓 𝑔′

𝑔 that we can solve for
(
𝑓

𝑔

) ′
. Subtract the second term in

the right side from both sides of the equation to get

𝑓 ′ − 𝑓 𝑔′

𝑔
=

(
𝑓

𝑔

) ′
𝑔.

Now, multiply both sides by the function 1/𝑔 and we have

𝑓 ′

𝑔
− 𝑓 𝑔′

𝑔2 =

(
𝑓

𝑔

) ′
.

Since 𝑓 ′

𝑔 =
𝑓 ′𝑔
𝑔2 , the left side can be written as one expression: 𝑓 ′𝑔− 𝑓 𝑔′

𝑔2 . The rule for division is then

Quotient Rule:
(
𝑓

𝑔

) ′
=
𝑓 ′𝑔 − 𝑓 𝑔′

𝑔2 .

Power rule

Next, we examine functions of the form 𝑓 : 𝑥 ↦→ 𝑥𝑘 , where 𝑘 is a natural number.8 We are
free to choose the dimension of our input variable. To change things up, this time let us assume a
dimension of Length for the input 𝑥. The outputs of function 𝑓 will then have dimension Length𝑘 .
This means that the derivative of 𝑓 will have dimension Length𝑘−1.9 Our simplest guess is then

𝑓 ′(𝑥) = 𝑐𝑥𝑘−1.

Now let us try a few examples. If 𝑘 = 0, then 𝑓 (𝑥) = 𝑥0 = 1 by convention, and so 𝑓 (𝑥) = 1,
with 𝑓 ′(𝑥) = 0 by the constant rule. If 𝑘 = 1, then 𝑓 (𝑥) = 𝑥1 = 𝑥, and so 𝑓 (𝑥) = 𝑥, with 𝑓 ′(𝑥) = 1𝑥0.
If 𝑘 = 2, then 𝑓 (𝑥) = 𝑥2, and we apply the product rule to get 𝑓 ′(𝑥) = (𝑥 · 𝑥)′ = 1 · 𝑥 + 𝑥 · 1 = 2𝑥1. If
𝑘 = 3, then 𝑓 (𝑥) = 𝑥3, and applying the product rule gives

𝑓 ′(𝑥) = (𝑥 · 𝑥2)′ = 1 · 𝑥2 + 𝑥 · (𝑥2)′ = 𝑥2 + 𝑥 · 2𝑥1 = 𝑥2 + 2𝑥2 = 3𝑥2.

We see that the constant 𝑐 depends on the value of 𝑘, so we will take 𝑐 to be a dimensionless
function of 𝑘. In particular, 𝑐(0) = 0, 𝑐(1) = 1, 𝑐(2) = 2, and 𝑐(3) = 3. The pattern appears to be
𝑐(𝑘) := 𝑘 and so our final guess is that

(𝑥𝑘)′ = 𝑘𝑥𝑘−1. (2.3)
8Natural numbers are numbers we use to count the number of objects with. They consist of: 0, 1, 2, 3, . . . .
9This is because Length𝑘/Length equals Length𝑘−1.
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There is every possibility that this formula breaks down and fails to work for some value of 𝑘 > 3.
So let 𝑆 denote the collection of natural numbers for which Formula 2.3 above fails to hold.

Ideally the collection 𝑆 is an empty collection, but if it is not, then there will be a natural number
in the collection 𝑆 which is the smallest.10 Call this number 𝑛. Since 𝑛 is in the collection 𝑆, our
formula will fail to hold for the number 𝑛. However, because the number 𝑛 − 1 is smaller than 𝑛,
it is not in the collection 𝑆. Thus our Formula 2.3 will work for the natural number 𝑛 − 1, giving
us (𝑥𝑛−1)′ = (𝑛 − 1)𝑥𝑛−2. Applying the product rule to the identity 𝑥𝑛 = 𝑥 · 𝑥𝑛−1 and using our
formula (𝑥𝑛−1)′ = (𝑛 − 1)𝑥𝑛−2 gives the following.

(𝑥𝑛)′ = (𝑥 · 𝑥𝑛−1)′ = 1 · 𝑥𝑛−1 + 𝑥(𝑥𝑛−1)′ = 𝑥𝑛−1 + 𝑥(𝑛 − 1)𝑥𝑛−2 = 𝑥𝑛−1 + (𝑛 − 1)𝑥𝑛−1 = 𝑛𝑥𝑛−1

And we see that (𝑥𝑛)′ = 𝑛𝑥𝑛−1, but this is simply Formula 2.3 from before! The formula works
for the number 𝑛, meaning that 𝑛 could not have been in the collection 𝑆. Since the collection of
natural numbers 𝑆 has no smallest element, 𝑆 must be an empty collection.

We conclude that all natural numbers obey our formula! Therefore, for each natural number 𝑘

Power Rule: (𝑥𝑘)′ = 𝑘𝑥𝑘−1.

And that concludes our introduction to the differentiation rules. Things may have gotten hairy
here and there, but the main point is that (i) differentiation rules are far from arbitrary, and are
the simplest thing that one could come up with, and (ii) you could have come up with them if you
wanted to, without knowing any calculus!

In order to obtain the power rule, we made the reasonable assumption (called an axiom) that
a nonempty collection of natural numbers must have a smallest natural number. This assump-
tion, called the well-ordering principle, together with the (also very reasonable) assumption that
each nonzero natural number 𝑛 has a “predecessor" 𝑛 − 1, can be used to prove many results in
mathematics, both in calculus and elsewhere. The two combinations are also widely used (in an
equivalent form) outside of mathematics, for example to prove the correctness of many algorithms.
Challenge 4 Use the well-ordering principle to show that if we have 𝑛 functions 𝑓1 , 𝑓2 , . . . , 𝑓𝑛 , for
some positive natural number 𝑛, then ( 𝑓1 + 𝑓2 + · · · + 𝑓𝑛)′ = 𝑓 ′1 + 𝑓 ′2 + · · · + 𝑓 ′𝑛 . This is also called the
sum rule for derivatives.

Polynomials
Combining the sum rule and the power rule allows us to find the derivatives of a large class

of functions. For example, it is straightforward to calculate the derivative of 𝑓 : 𝑛 ↦→ 3600𝑛5 +
70000𝑛4 + 42𝑛 + 9 and 𝑔 : 𝑘 ↦→ 𝑘2 + 𝑘. Such functions are examples of polynomials.

A polynomial of degree 𝑚 (on the variable □) is an expression of the form

𝑐𝑚□
𝑚 + 𝑐𝑚−1□

𝑚−1 + 𝑐𝑚−2□
𝑚−2 + · · · + 𝑐2□

2 + 𝑐1□ + 𝑐0 ,

where the coefficients 𝑐𝑚 , 𝑐𝑚−1 , . . . , 𝑐1 , 𝑐0 are allowed to be any number, including 0, with the
exception of 𝑐𝑚 , which must be nonzero. A polynomial of degree at most𝑚 includes all polynomials
of degree less than or equal to 𝑚.

10This number will be greater than 3 because we checked the formula up until the number 3.
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The expression 3600𝑛5 + 70000𝑛4 + 42𝑛 + 9 is a polynomial of degree 5 (on the variable 𝑛), and
the expression 𝑘2 + 𝑘 is a polynomial of degree 2 (on the variable 𝑘).

It will be convenient to introduce the following notation, called the summation notation. For

the natural numbers 𝑝 and 𝑞 with 𝑝 ≤ 𝑞, the expression
𝑞∑
♦=𝑝

ℎ(♦)means ℎ(𝑝) + ℎ(𝑝 + 1) + · · · + ℎ(𝑞).

In particular,
∑𝑝

♦=𝑝 ℎ(♦) := ℎ(𝑝). Using this notation, a polynomial of degree 𝑚 on the variable □

may be written compactly as
∑𝑚
♦=0 𝑐♦□

♦, or equivalently as
∑𝑚
♦=0 𝑐𝑚−♦□

𝑚−♦. The latter respects the
ordering of each term in our definition, while the former reverses it from back to front.

If 𝑓 is a polynomial of degree 𝑚 on the variable 𝑡, then by the sum rule,

𝑓 ′ =

(
𝑚∑
𝑖=0

𝑐𝑖𝑡
𝑖

) ′
=

𝑚∑
𝑖=0
(𝑐𝑖𝑡 𝑖)′.

Applying the product rule on the constant function 𝑐𝑖 : 𝑡 ↦→ 𝑐𝑖 and the function 𝑡 𝑖 : 𝑡 ↦→ 𝑡 𝑖 gives
(𝑐𝑖𝑡 𝑖)′ = 𝑐𝑖(𝑡 𝑖)′. By the power rule (𝑡 𝑖)′ = 𝑖𝑡 𝑖−1, and so

𝑓 ′
(
𝑚∑
𝑖=0

𝑐𝑖𝑡
𝑖

) ′
=

𝑚∑
𝑖=0
(𝑐𝑖 𝑖)𝑡 𝑖−1. (2.4)

This is a fairly symbol heavy way to write down what we already knew. For example, (3600𝑛5 +
70000𝑛4 + 42𝑛 + 9)′ = 3600 · 5𝑛4 + 70000 · 4𝑛3 + 42 and (𝑘2 + 𝑘)′ = 2𝑘 + 1. The key idea is that we can
take any polynomial, calculate its derivative term by term, then add them up to get the derivative
of the polynomial. That is all that Formula 2.4 is saying.
Challenge 5

(a) Write the expression 13 + 23 + 33 + · · · + 𝑘3 using the summation notation.
(b) Using (1 + 𝑋)2 := (1 + 𝑋)(1 + 𝑋) = 1 + 𝑋 + 𝑋 + 𝑋2 = 1 + 2𝑋 + 𝑋2, expand (1 + 𝑋)3.
(c) Check that

∑𝑛
𝑘=1 𝑘 = 𝑛(𝑛 + 1)/2 holds when 𝑛 = 1, 𝑛 = 2, and 𝑛 = 3.

(d) Use the well-ordering principle to show that the equation
∑𝑛
𝑘=1 𝑘 = 𝑛(𝑛 + 1)/2 holds for each

positive natural number 𝑛.

2.2 What is a Velocity?

The definition
We have worked out the arithmetic of derivatives, so now it is time to figure out what a derivative

is. Recall that the notion of a derivative generalizes the idea of a velocity. Why do we care about
velocity? We usually care about our velocity when we are in a car, so let us start from there. Why
is there a speedometer in every car? I suppose it can help us avoid getting speeding tickets. But
what if we didn’t have to worry about tickets? Speedometers are there so that we can gauge when
we will get to our destination. If our speedometer says 70 km/hr (or mi/hr if you wish), then we
know that if we go for an hour at that speed, then we will be able to cover a distance of 70 km.

Let us denote our current time by 𝑡, our position function by 𝑓 , our current velocity of 70 km/hr
by 𝑣, and the time interval we wish to look into the future (an hour) by 𝛼. If we manage to travel at



DRAFT
16 CHAPTER 2. DIFFERENTIATION

exactly 70 km/hr for the next hour without any change in our velocity, then we can calculate our
future position an hour later using our current position with the following formula.

𝑓 (𝑡 + 𝛼)︸   ︷︷   ︸
future pos.

= 𝑓 (𝑡)︸︷︷︸
current pos.

+ 𝑣 · 𝛼︸︷︷︸
travel dist.

In reality, it is impossible to stick to an exact constant velocity for an hour. Because our velocity
will deviate during the hour, the correct formula will be given by

𝑓 (𝑡 + 𝛼)︸   ︷︷   ︸
future pos.

= 𝑓 (𝑡)︸︷︷︸
current pos.

+ 𝑣 · 𝛼 + 𝑋︸    ︷︷    ︸
projected travel dist.

(2.5)

where 𝑋 is the error in our projection caused by our velocity deviations during the next hour.
What can we say about our velocity deviations? That there will be deviations happening

constantly, and so it makes no sense to try and track them all down! So instead, let’s simplify
and try to summarize our velocity deviations in a sinlge number. We cannot keep track of all
the velocity deviations, but we know that their cumulative effect is given by the distance error 𝑋.
We also know that the longer into the future we try to predict (3 hours for example), the greater
the error. Conversely, the shorter we look into the future (3 minutes for example), the lesser the
error. Hence the length of the time interval 𝛼 will is correlated with how much velocity deviations
occur. 𝑋 is a Length and 𝛼 is a time, and so 𝑋/𝛼 is a speed, which is what we are looking for to
summarize our velocity deviation. We will define the rogue velocity to be 𝑋/𝛼, a quantity we will
use to summarize the amount of velocity deviations we experience during time interval 𝛼.

What can we say about our rogue velocity 𝑋/𝛼? If we choose smaller values of 𝛼, then it
becomes smaller. How small can we choose 𝛼? Any positive number 𝛼 is fair game because then
Equation 2.5 can be used to make a projection into the future, which is the whole point of wanting
to know velocity. If 𝛼 is negative, then we are no longer making a projection, we are looking into
the past, so that’s no good. Similarly, if 𝛼 is zero, then we are no longer making a projection, we
are looking into the present, so that’s no good either. So as long as 𝛼 is positive, we can make it as
large or as small as we wish. Except, we don’t want 𝛼 to be large, because our projections will be
garbage, so we want 𝛼 > 0 to be small.

Now, suppose we call a friend and ask what they are doing. The question we ask is “what are
you doing right now?". But what we mean is not the same as the words we say. “What are you
doing right now?" is short for, “what were you doing before you picked up the phone?" Otherwise,
our question will always be answered with: “I’m on the phone" or “I’m talking to you". Duh, we
meant before that!

We will do the exact same thing. We know that rogue velocity decreases as we drop 𝛼. But
drop to what? There is no smallest positive number to drop to.11 To get around the issue of
having no smallest positive number to drop to, we will say that we “drop 𝛼 to zero" (just as we
say “what are doing right now" to mean “what were you doing before picking up the phone?").
Using this language, we will say: “the rogue velocity drops to zero as we drop 𝛼 to zero", with
the understanding that we are not actually taking anything to zero. In symbols we will write: as
𝛼→ 0, 𝑋/𝛼→ 0, which we read as “as 𝛼 drops to 0, (rogue velocity) 𝑋/𝛼 drops to 0.

11If 𝑎 > 0 is a candidate for the smallest positive number, then 𝑎/2 is an even smaller positive number.
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We will need to write this so often that an even simpler notation will be very helpful. We will
write □ = 𝑜𝛼(1) to mean that the quantity □ has the property that as 𝛼→ 0, □→ 0. Hence rogue
velocity 𝑋/𝛼 = 𝑜𝛼(1), because it has the property that as 𝛼→ 0, 𝑋/𝛼→ 0. Multiplying both sides
of the equation by 𝛼, we see that the distance error 𝑋 = 𝛼 · 𝑜𝛼(1).

We now take our projection Formula 2.5 and replace error 𝑋 by 𝛼 · 𝑜𝛼(1), because 𝑋 = 𝛼 · 𝑜𝛼(1).

Definition 1. A function 𝑓 is differentiable at input 𝑡 if there is a number 𝑣 such that the following
equation holds.

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑣 · 𝛼 + 𝛼 · 𝑜𝛼(1)

If such a number 𝑣 exists, then 𝑣 is called the derivative of 𝑓 at 𝑡. We will also denote the derivative
of 𝑓 at 𝑡 using the notation 𝑓 ′(𝑡). If function 𝑓 is differentiable at every input, then 𝑓 is said to be a
differentiable function, and the derivative of 𝑓 is denoted by the symbol 𝑓 ′.12

To recap, the whole point of wanting to know our velocity is to predict our future position at 𝛼
(minutes, say) into the future. Our current velocity 𝑣 times the time interval 𝛼 tells us how much
we expect to have moved, but we recognize that there will be an error 𝑋 caused by our velocity
deviations away from 𝑣 during our travel. To quantify the velocity deviations, we define a rogue
velocity 𝑋/𝛼, which has the property of droping to 0 as we drop the time interval 𝛼 to 0. Hence
𝑋/𝛼 = 𝑜𝛼(1), where the symbol 𝑜𝛼(1) denotes a quantity that drops to 0 as we drop 𝛼 to 0.

Time

When we are observing objects traveling across a line (like a straight path/road), there is a
notion of what is located on the right and what is located on the left. The notion of orientation,
what direction is left and what direction is right, is not unique. For example, if we are having a
face to face conversation, your right is my left and my right is your left.

When we say time, we will be using it in the exact same manner as position. Just as we can
measure lengths and distances, we can measure time differences. Just like we can travel left to right
or right to left, we can go from a smaller time value to a larger time value, but also from a larger
time value to a smaller time value. Just as the orientation of what is left versus right is not unique
and is a matter of convention, the flow of time is not unique and is a matter of convention.

Therefore, our discussion of predicting position “in the future" must work for folks whose flow
of time is the opposite of ours, and are thus (in our view) calculating position in the past. In our
view, they will be taking negative 𝛼 values then “upping" it to 0, but everything will work in the
same manner. Since dropping 𝛼 to 0 and “upping" 𝛼 to 0 are the same action, just in different time
flow conventions, we will denote both by the symbol 𝛼→ 0.

To really drive the point home that 𝛼 can be taken to be either positive or negative, we will write
the defining equation of a derivative at an input 𝑡 as

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜𝛼(1). (2.6)

This modification does not change the equation and its interpretation. The symbol |𝑎| is used to
denote the absolute value of a number 𝑎, and is defined to be 𝑎 if 𝑎 is positive or zero, and −𝑎 if 𝑎

12Since 𝑡 + 𝛼 is an input of 𝑓 , 𝛼 must have the dimension of an input of 𝑓 . Furthermore, for 𝑓 (𝑡) + 𝑣 · 𝛼 to make sense,
𝑣 · 𝛼 must have dimension 𝑓 (𝑡). Therefore, a derivative has a dimension of 𝑓 divided by its input, as expected.
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is less than zero. For example, the absolute value of −2, written |−2| is 2, while the absolute value
of 2, written |2| is still 2.13 An absolute value function |𝑥| is the function 𝑥 ↦→ |𝑥|, which switches
the sign of negative inputs. Because the value |𝑎| changes only when 𝑎 is negative, writing the
definition of the derivative as Equation 2.6 reminds us that 𝛼 can be negative.

The absolute value of a velocity is the speed. For example, if an object has the velocity of −5
m/s, then it is moving to the left at a speed of 5 m/s. Similarly, an object with the velocity of 5 m/s
is moving to the right at a speed of 5 m/s.

Little oh of one

Since we have a new object 𝑜𝛼(1) we best describe how to do arithmetic with it. It is going to
be so simple and magical: if we have 𝑜𝛼(1) and add/subtract/multiply another 𝑜𝛼(1) to it, it does
nothing! Even better, if we multiply a constant to 𝑜𝛼(1), it stays the same. How could such a thing
be possible? Let’s try and build some intuition about the behavior of 𝑜𝛼(1).

From now on, we will simplify the notation even further by omitting the subscript 𝛼 and writing
𝑜(1). For example, we will write the definition of a derivative at an input 𝑡 as

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1). (2.7)

This is because we will always be taking 𝛼→ 0, and so the subscript 𝛼 is redundant. Rest assured,
if there is a potential for confusion, then I will write down the necessary subscripts.

Recall that if something is denoted by the symbol 𝑜(1), then it drops to 0. Imagine a sleigh on
a snowy hill headed towards the ground level, which we take to be 0 (meters). We will denote the
position of our sleigh over time by the symbol 𝑋, which satisfies 𝑋 = 𝑜(1). If we moved our sleigh
and placed it on top of a hill twice as high or twice as small, the sleigh will still drop towards the
ground. That is, 2𝑋 = 𝑜(1) and (1/2)𝑋 = 𝑜(1). In fact, the number 2 is not special, for we could
have picked any positive number. Hence, if 𝑐 is a positive constant, then 𝑐𝑋 = 𝑜(1). We will thus
write that for each positive constant 𝑐, we have 𝑐 · 𝑜(1) = 𝑜(1).

If the multiplying factor is not a constant, this may no longer be true! Indeed, (1/𝑋)·𝑋 = 1 ≠ 𝑜(1)
because a nonzero constant (like 1) will never drop to 0, it’s a nonzero constant!

Suppose 𝑌 ≤ 𝑋 and 𝑋 = 𝑜(1). Can we conclude that 𝑌 = 𝑜(1)? Suppose 𝑌 denotes the location
of a spectator, moving about underground (thus 𝑌 < 0) and never approaching the ground level,
hence 𝑌 ≠ 𝑜(1). Then 𝑌 ≤ 𝑋, but 𝑌 ≠ 𝑜(1). What if we look at the absolute value |𝑌| instead and
pretend that the spectator is on top of the hill? Now we can see that the spectator’s location is not
dropping to 0, because the spectator is not on a sleigh rolling down, So one way to check if𝑌 = 𝑜(1)
is to see if |𝑌| ≤ 𝑜(1).

One of the advantages of using 𝑜(1) notation is that absolute values are built in. To see this, we
use the fact that the orientation of direction is not unique. We will flip the convention of up and
down and denote everything higher than the base of the hill with a negative sign. Thus a hill of
height 5 meters is now of height−5 meters. This means that the position of our sleigh is now−𝑋, yet
this will not change the fact our sleigh will still drop down towards the ground. Hence −𝑋 = 𝑜(1),
and so −𝑜(1) = 𝑜(1).14 Since 𝑐 · 𝑜(1) = 𝑜(1) for positive 𝑐, we see that −𝑐𝑜(1) = −𝑜(1) = 𝑜(1).
Therefore, 𝑐 · 𝑜(1) = 𝑜(1) for each constant 𝑐 (whether negative, positive or zero).

13Thus the absolute value of a nonzero number is always positive (the absolute value of 0 is 0).
14As a consequence |𝛼|𝑜(1) and 𝛼 · 𝑜(1) are interchangeable, regardless of the sign of 𝛼.
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Suppose we have two sleighs that arrive at the bottom of the hill at the same time, whose
positions we denote by 𝑋 and 𝑌 respectively. We know that 𝑋 = 𝑜(1) and 𝑌 = 𝑜(1). Sum their
position functions to define 𝑍 := 𝑋 + 𝑌. If 𝑍 ≠ 𝑜(1), that means 𝑍 does not drop to 0; suppose
𝑍 never drops below 𝑘 > 0. But 𝑋 and 𝑌 both stay below height 𝑘/2 after some time has passed
because they drop to the ground, meaning that their sum will drop below 𝑘. Hence𝑍 = 𝑋+𝑌 = 𝑜(1)
and so 𝑜(1) + 𝑜(1) = 𝑜(1). This is also consistent with the fact that 2 · 𝑜(1) = 𝑜(1).

Using −𝑜(1) = 𝑜(1) and 𝑜(1) + 𝑜(1) = 𝑜(1), we have 𝑜(1) − 𝑜(1) = 𝑜(1) + 𝑜(1) = 𝑜(1). Therefore,
𝑜(1) − 𝑜(1) ≠ 0. This makes sense because 𝑋 = 𝑜(1) and 0 = 𝑜(1) (0 drops to 0 for sure!), but
𝑋 − 0 = 𝑋 ≠ 0. Here we find a peculiarity: 0 = 𝑜(1), yet 𝑜(1) ≠ 0. Confusing? Not really, because
0 = 𝑜(1) means 0 falls to 0, which is true. But saying anything is equal to 0, as in 𝑜(1) ≠ 0, is false
unless that thing is itself 0. Similarly, 𝑋 = 𝑜(1) means 𝑋 drops to 0, but 𝑜(1) ≠ 𝑋 because the
quantity represented by the notation 𝑜(1) is not necessarily 𝑋.

Finally, the product satisfies 𝑜(1)𝑜(1) = 𝑜(1). To check this, set our origin for the time axis to
when our sleigh reaches the ground. Then the sleigh reaches the ground at 𝑡 = 0, and is dropping
down during negative time. Suppose our sleigh always remains below the height of 3 meters
above ground after 𝑡 = −5 seconds. In other words, from 𝑡 = −5 and onwards, 𝑋 < 3. Now
take 𝛼 = −5 and then up it to 0. Ignoring everything that happened before time 𝑡 = −5, we have
𝑋𝑜(1) ≤ 3 · 𝑜(1) = 𝑜(1), and since 𝑋 = 𝑜(1), we have 𝑜(1)𝑜(1) = 𝑜(1).

Our findings, summarized below, will simplify calculations greatly.
(a) 𝑜(1) □ 𝑜(1) = 𝑜(1), where □ can be +, −, or ×. If 𝑐 is a constant, then 𝑐 · 𝑜(1) = 𝑜(1).
(b) To check if 𝑓 = 𝑜(1), put it on the slope! If | 𝑓 | ≤ 𝑜(1), then 𝑓 = 𝑜(1).

Basic properties

We will now check that our definition of the derivative satisfies the arithmetic rules we deduced
at the beginning. It will require more work than dimensional analysis, but everything is still just
arithmetic: adding, subtracting, multiplying, and dividing. The twist is that we will be using
arithmetic with 𝑜(1), but that makes things simpler! Remember, if we multiply 𝑜(1) with itself or
a constant (a derivative of a function at a point is a constant), then the result is still 𝑜(1). But if we
multiply 𝑜(1)with a variable (like 𝛼, which we want to drop to 0), then we cannot simplify further.

Uniqueness of derivatives

When we speak of a velocity of an object, we are speaking about the velocity of an object. That
is to say, there should be one unique velocity of an object. Suppose a function 𝑓 has a derivative of
𝑎 at 𝑡. This means that the equation 𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑎𝛼 + |𝛼|𝑜(1) holds. Is it possible that there is
a different number that satisfies the above equation? What if there is a number 𝑏, with 𝑎 ≠ 𝑏 such
that the following holds?

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑏𝛼 + |𝛼|𝑜(1)

This would be a big problem, because we will be unable to agree on exactly which derivative 𝑓 ′(𝑡)
we are talking about: do we mean the number 𝑎 or the number 𝑏? Is our definition too weak to
rule such cases out?

Let us check and see. Suppose a function 𝑓 is differentiable at 𝑡 with derivative 𝑎 and 𝑏. Here,
𝑓 is a function, while 𝑡, 𝑎, and 𝑏 are all numbers. To show that a derivative is unique, it is sufficient



DRAFT
20 CHAPTER 2. DIFFERENTIATION

to show that 𝑎 − 𝑏 = 0. The definition of a derivative gives us the two equations

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑎𝛼 + |𝛼|𝑜(1),
𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑏𝛼 + |𝛼|𝑜(1).

Equate these two to get 𝑓 (𝑡) + 𝑎𝛼 + |𝛼|𝑜(1) = 𝑓 (𝑡) + 𝑏𝛼 + |𝛼|𝑜(1). Subtract the terms 𝑓 (𝑡) and 𝑏𝛼
from both sides and we have

𝑎𝛼 − 𝑏𝛼 + |𝛼|𝑜(1) = |𝛼|𝑜(1).
Recall that −𝑜(1) and 𝑜(1) are the same. We divide both sides by the nonzero term 𝛼 to get

𝑎 − 𝑏 + 𝑜(1) = 𝑜(1).

Denote the left side of the equation above by 𝐴 and the right side by 𝐵. Now take 𝛼 → 0 and
observe that 𝐴 → (𝑎 − 𝑏) and 𝐵 → 0. Since 𝐴 = 𝐵, we see that 𝑎 − 𝑏 = 0. Whenever derivatives
exist, we know that they must be unique!

Constant rule

Let 𝑓 : 𝑥 ↦→ 𝑐 be a constant function. Since 0 = 𝑜(1), we have 0 = |𝛼|𝑜(1). Then for each 𝑡,

𝑓 (𝑡 + 𝛼) = 𝑐 = 𝑐 + 0 + 0 = 𝑓 (𝑡) + 0 · 𝛼 + 0 = 𝑓 (𝑡) + 0 · 𝛼 + |𝛼|𝑜(1).

This is true for any input 𝑡. Therefore constant functions are differentiable, and the zero function
is its derivative, as we expected.

Sum rule

Suppose functions 𝑓 and 𝑔 are differentiable at 𝑡. By the definition of the derivative,

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1), 𝑔(𝑡 + 𝛼) = 𝑔(𝑡) + 𝑔′(𝑡)𝛼 + |𝛼|𝑜(1).

Taking the sum gives

𝑓 (𝑡 + 𝛼) + 𝑔(𝑡 + 𝛼) =
(
𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1)

)
+

(
𝑔(𝑡) + 𝑔′(𝑡)𝛼 + |𝛼|𝑜(1)

)
.

Since |𝛼|𝑜(1) + |𝛼|𝑜(1) = |𝛼|
(
𝑜(1) + 𝑜(1)

)
= |𝛼|𝑜(1), we have

( 𝑓 + 𝑔)(𝑡 + 𝛼) := 𝑓 (𝑡 + 𝛼) + 𝑔(𝑡 + 𝛼) =
(
𝑓 (𝑡) + 𝑔(𝑡)

)
+

[
𝑓 ′(𝑡) + 𝑔′(𝑡)

]
𝛼 + |𝛼|𝑜(1).

Therefore, the sum function ( 𝑓 +𝑔) : 𝑡 ↦→ [ 𝑓 (𝑡)+𝑔(𝑡)] is differentiable at 𝑡, with derivative ( 𝑓 ′+𝑔′)(𝑡).

Product rule

Suppose functions 𝑓 and 𝑔 are differentiable at 𝑡. By the definition of the derivative,

𝑓 (𝑡 + 𝛼)𝑔(𝑡 + 𝛼) =
(
𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1)

)
·
(
𝑔(𝑡) + 𝑔′(𝑡)𝛼 + |𝛼|𝑜(1)

)
.

The product is simple, but will look much more complicated than it is! The product multiplies out
to:

𝑓 (𝑡 + 𝛼)𝑔(𝑡 + 𝛼) = 𝑓 (𝑡)𝑔(𝑡) +
[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝛼 + 𝑓 ′(𝑡)𝑔′(𝑡)𝛼2 + |𝛼|𝐴𝑜(1) (2.8)
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where 𝐴 := 𝑓 (𝑡) + 𝑔(𝑡) + 𝑓 ′(𝑡)𝛼 + 𝑔′(𝑡)𝛼 + |𝛼|𝑜(1). Here is a friendly reminder: 𝑓 (𝑡), 𝑔(𝑡), 𝑓 ′(𝑡), 𝑔′(𝑡)
are all constants. Because we multiply 𝐴 to 𝑜(1), all the constants vanish, and we get 𝐴 = 𝛼+ 𝛼𝑜(1).
Furthermore, the term 𝛼2 = 𝛼𝑜(1) because if we divide it by 𝛼 and take 𝛼 → 0, then what’s left
(just 𝛼) drops to zero. Equation 2.8 is thus

𝑓 (𝑡 + 𝛼)𝑔(𝑡 + 𝛼) = 𝑓 (𝑡)𝑔(𝑡) +
[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝛼 + 𝑓 ′(𝑡)𝑔′(𝑡)𝛼𝑜(1) + |𝛼|[𝛼 + 𝛼𝑜(1)]𝑜(1)

= 𝑓 (𝑡)𝑔(𝑡) +
[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝛼 + 𝛼𝑜(1) + 𝛼2𝑜(1) + 𝛼2𝑜(1)𝑜(1)

= 𝑓 (𝑡)𝑔(𝑡) +
[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝛼 + 𝛼𝑜(1) + 𝛼𝑜(1)𝑜(1) + 𝛼𝑜(1)𝑜(1)𝑜(1).

Since 𝑜(1)𝑜(1) = 𝑜(1) and 𝛼𝑜(1) = |𝛼|𝑜(1), we have

𝑓 (𝑡 + 𝛼)𝑔(𝑡 + 𝛼) = 𝑓 (𝑡)𝑔(𝑡) +
[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝛼 + |𝛼|𝑜(1)

and so the product function is differentiable at 𝑡 with derivative 𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡). Whew!

Quotient Rule

Just as we saw before, the rule for division follows from the product rule. Suppose functions
𝑓 and 𝑔 are differentiable at 𝑎, and 𝑔(𝑎) is nonzero. Furthermore, assume that the function
( 𝑓 /𝑔) : 𝑥 ↦→ 𝑓 (𝑥)/𝑔(𝑥) is differentiable at 𝑎. Then we can apply the product rule to 𝑓 = ( 𝑓 /𝑔) · 𝑔 to
obtain

𝑓 ′(𝑎) = ( 𝑓 /𝑔)′(𝑎) · 𝑔(𝑎) + ( 𝑓 /𝑔)(𝑎) · 𝑔′(𝑎).

This gives us the quotient rule ( 𝑓 /𝑔)′(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎)− 𝑓 (𝑎)𝑔′(𝑎)
[𝑔(𝑎)]2 .15 Taking 𝑓 : 𝑥 ↦→ 1 gives us the

reciprocal rule: if 1/𝑔 is differentiable at 𝑎, then (1/𝑔)′(𝑎) = −𝑔′(𝑎)/[𝑔(𝑎)]2.

2.3 The Chain Rule

Dual numbers

Let us take a second look at our definition of the derivative of function 𝑓 at 𝑡:

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1).

The term 𝛼 is not exactly a number—it is, until we drop it to zero.16 So really, we are using the term
𝛼 to mean the same thing as 𝑎 · 𝑜(1), where 𝑎 is the starting value of 𝛼.17 So let us substitute the
term 𝛼 with 𝑎 · 𝑜(1) into the definition of the derivative:

𝑓 (𝑡 + 𝑎 · 𝑜(1)) = 𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝑜(1) + |𝑎|𝑜(1).

Since 𝑓 ′(𝑡) is a constant, 𝑎 𝑓 ′(𝑡)𝑜(1) = 𝑜(1), and thus the term 𝑎 𝑓 ′(𝑡)𝑜(1) can be absorbed into the
final term |𝑎|𝑜(1). But that’s not what we want! We need the term 𝑎 𝑓 ′(𝑡)𝑜(1) to stay, because we are

15It is much easier to remember the rule as ( 𝑓 /𝑔)′ = ( 𝑓 ′𝑔 − 𝑓 𝑔′)/(𝑔2). Or to derive it yourself!
16This is why we are using a Greek letter to denote it. It is not like the other numbers.
17Indeed 𝑎 · 𝑜(1) = 𝑜(1), but let us leave the constant for now.
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defining 𝑓 ′(𝑡) to satisfy the equation above. Instead, we will let the term 𝑎 𝑓 ′(𝑡)𝑜(1) absorb the term
|𝑎|𝑜(1). This gives us a simpler equation:

𝑓 (𝑡 + 𝑎 · 𝑜(1)) = 𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝑜(1).

That’s better, but notice that we have no 𝛼 quantity for us to drop. Since the notation 𝑜(1)makes
little sense, we will replace the notation 𝑜(1)with the Greek letter 𝜖 to write:

𝑓 (𝑡 + 𝑎𝜖) = 𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝜖. (2.9)

Since we are no longer taking 𝛼 → 0, the term 𝜖 is no longer 𝑜(1). But the number 𝜖 should
still preserve the key characteristics of the object 𝑜(1). The three properties of 𝑜(1) that we have
needed in our derivations so far were: 𝑐 · 𝑜(1) = 𝑜(1) for each constant 𝑐, 𝑜(1) + 𝑜(1) = 𝑜(1), and
𝑜(1)𝑜(1) = 𝑜(1). We do not want to preserve the first property, because if we do, then Equation 2.9
becomes 𝑓 (𝑡 + 𝑎𝜖) = 𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝜖 = 𝑓 (𝑡) + 𝜖, and we have lost the crucial 𝑓 ′(𝑡) term. In addition,
we do not want to preserve the second property: if 𝜖 + 𝜖 = 2𝜖 = 𝜖, then we lose the uniqueness
property of derivatives, for if 𝑣 is a derivative satisfying Equation 2.9, then so does 2𝑣 (the 2 is
absorbed by 𝜖). The only requirement left is 𝜖2 = 0. This is also a problem, because the only
number that squares to a zero is zero. Hence 𝜖 = 0, in which case Equation 2.9 becomes 𝑓 (𝑡) = 𝑓 (𝑡),
useless!

Is this approach doomed to fail? Let us backtrack a bit. We know that we cannot bring over the
properties 𝑐 · 𝑜(1) = 𝑜(1) and 𝑜(1) + 𝑜(1) = 𝑜(1). However, the only objection with bringing over
𝑜(1)𝑜(1) = 𝑜(1) is that there is no nonzero number that squares to zero. From the very beginning,
we have tried to be more lax on what we mean by a number—indeed, a unit is not a number, but
doing arithmetic with it as if it were turned out to be very useful! We will take the same approach
and agree that 𝜖 is no ordinary number. We will define 𝜖 to be a nonzero quantity such that 𝜖2 = 0.

A dual number is a number 𝑎 + 𝑏𝜖 for ordinary numbers 𝑎 and 𝑏 and a symbol 𝜖 such that
𝜖 ≠ 0 but 𝜖2 = 0.Using dual numbers, the derivative of a function is defined by Equation 2.9 from
before. A function 𝑓 is differentiable at 𝑡 if the following equation holds for nonzero 𝑎:

𝑓 (𝑡 + 𝑎𝜖) = 𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝜖

and the number 𝑓 ′(𝑡) is called the derivative of 𝑓 at 𝑡.
Is this definition any good? Is it even correct? Let us check and see if this new definition obeys

the same rules as before. Uniqueness is easy to check: if ♣ and ♠ are derivatives of 𝑓 at 𝑡, then
𝑓 (𝑡)+ 𝑎♣𝜖 = 𝑓 (𝑡)+ 𝑎♠𝜖. Subtract 𝑓 (𝑡) from both sides and divide by 𝑎 and 𝜖 which are both nonzero
to get ♣ = ♠.

The constant rule is also easy to check: if 𝑓 is a constant function, then

𝑓 (𝑡 + 𝑎𝜖) = 𝑓 (𝑡) + 𝑎 · 0 · 𝜖

and so 𝑓 has the zero derivative everywhere.
Our new definition really starts to shine when verifying the sum rule and the product rule. The

sum rule is verified as follows.

( 𝑓 + 𝑔)(𝑡 + 𝑎𝜖) =
[
𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝜖

]
+

[
𝑔(𝑡) + 𝑎𝑔′(𝑡)𝜖

]
=

[
𝑓 (𝑡) + 𝑔(𝑡)

]
+ 𝑎

[
𝑓 ′(𝑡) + 𝑔′(𝑡)

]
𝜖
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The product rule, a monstrosity using our previous definition, is now quite manageable:

( 𝑓 𝑔)(𝑡 + 𝑎𝜖) =
[
𝑓 (𝑡) + 𝑎 𝑓 ′(𝑡)𝜖

] [
𝑔(𝑡) + 𝑎𝑔′(𝑡)𝜖

]
= 𝑓 (𝑡)𝑔(𝑡) + 𝑎

[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝜖 + 𝑎2 𝑓 ′(𝑡)𝑔′(𝑡)𝜖2

=
[
𝑓 (𝑡)𝑔(𝑡)

]
+ 𝑎

[
𝑓 ′(𝑡)𝑔(𝑡) + 𝑓 (𝑡)𝑔′(𝑡)

]
𝜖.

So it seems like our new definition is all good to go! Let us go one step further. There is
one important operation that we cannot do with units, but we can do with functions. This is the
chaining operation: we can use one function as an input to another function. Suppose we chain
the outputs of a function 𝑔 into another function 𝑓 . We write this using the notation 𝑓 ◦ 𝑔. Let us
assume that function 𝑔 is differentiable at 𝑡 and that function 𝑓 is differentiable at 𝑔(𝑡). A natural
question to ask is whether the chained function 𝑓 ◦ 𝑔 is differentiable at 𝑡, and if so, what is the
derivative? Let us check and see!

As we have done before, we consider the expression ( 𝑓 ◦ 𝑔)(𝑡+ 𝑎𝜖), which (by differentiability of
𝑔 at 𝑡) is the same thing as 𝑓

(
𝑔(𝑡) + 𝑎𝑔′(𝑡)𝜖

)
. Let us denote 𝑎𝑔′(𝑡) by the letter 𝑎̄ and 𝑔(𝑡) by 𝑡. Since

function 𝑓 is differentiable at 𝑔(𝑡), by the new definition of a derivative, 𝑓
(
𝑡+ 𝑎̄𝜖

)
= 𝑓

(
𝑡
)
+ 𝑎̄ 𝑓 ′

(
𝑡
)
𝜖 =

𝑓
(
𝑔(𝑡)

)
+ 𝑎𝑔′(𝑡) 𝑓 ′

(
𝑔(𝑡)

)
𝜖. We reorganize what we have found in the following line.

( 𝑓 ◦ 𝑔)(𝑡 + 𝑎𝜖) = 𝑓
(
𝑔(𝑡) + 𝑎𝑔′(𝑡)𝜖

)
= 𝑓

(
𝑔(𝑡)

)
+ 𝑎𝑔′(𝑡) 𝑓 ′

(
𝑔(𝑡)

)
𝜖 = ( 𝑓 ◦ 𝑔)(𝑡) + 𝑎( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡)𝜖

So we see that if 𝑔 is differentiable at 𝑡 and 𝑓 is differentiable at 𝑔(𝑡), then the chained function
( 𝑓 ◦ 𝑔) is differentiable at 𝑡, with ( 𝑓 ◦ 𝑔)′(𝑡) = ( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡). This is called the chain rule.

Dual numbers are incredibly useful because they simplify calculations of derivatives enor-
mously. Nevertheless, they utilize a suspect object 𝜖 which is nonzero while squaring to zero.
Until we have the means to understand exactly what such an object is, we will stick to our previous
definition of the derivative using 𝑜(1).

Absolute values

We are going to have to verify our new result (the chain rule) independently using our definition
of the derivative. This will require some preparation. As a first step, let us return to the absolute
value function.

The absolute value function, which takes in a number and outputs the number’s absolute value,
has two important properties called the triangle inequality and homogeneity.

The triangle inequality states that for two numbers 𝑎 and 𝑏, the inequality |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|
holds. Notice that if 𝑎 and 𝑏 are both positive or both negative, or at least one of them is zero, then
|𝑎 + 𝑏| = |𝑎| + |𝑏|. The inequality holds because the inequality becomes an equality.

The only remaining possibility is when exactly one of the numbers 𝑎, 𝑏 is positive and the other
is negative. For definiteness, let 𝑎 > 0 and 𝑏 < 0. There are two possibilities: either 𝑎 + 𝑏 ≥ 0 or
𝑎 + 𝑏 < 0. In the former case,

|𝑎 + 𝑏| = 𝑎 + 𝑏 < 𝑎 + (−𝑏) = |𝑎| + |𝑏|

while in the latter case,

|𝑎 + 𝑏| = −(𝑎 + 𝑏) = −𝑎 − 𝑏 = −𝑎 + (−𝑏) = −𝑎 + |𝑏| < |𝑎| + |𝑏|.
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This completes our verification of the triangle inequality.
Homogeneity of the absolute value function states that for two numbers 𝑎 and 𝑏, we have

|𝑎𝑏| = |𝑎||𝑏|. If at least one of the numbers is zero, then the equation holds. The full result is
verified by trying out all three cases: (i) 𝑎 ≥ 0 and 𝑏 ≥ 0, (ii) 𝑎 ≤ 0 and 𝑏 ≤ 0 (iii) exactly one of the
numbers is positive, while the other is not.
Challenge 6

(a) By exhausting the cases (as in the proof of the triangle inequality), show that |𝑎𝑏| = |𝑎||𝑏|.
(b) If 𝑏 is nonzero, use part (a) to show that |1/𝑏| · |𝑏| = 1 and conclude that |1/𝑏| = 1/|𝑏|.
(c) If 𝑏 is nonzero, use parts (a) and (b) to show that |𝑎/𝑏| = |𝑎|/|𝑏|.
(d) Show that |𝑐| − |𝑑| ≤ |𝑐 − 𝑑|. [Hint: The triangle inequality says that |𝑎 + 𝑏| − |𝑏| ≤ |𝑎|.]

The chain rule

Recall that if we have two functions 𝑓 and 𝑔, and use the output of 𝑔 as the input to 𝑓 , then the
chained function is written 𝑓 ◦ 𝑔. Thus 𝑓 ◦ 𝑔 : 𝑥 ↦→ 𝑓 (𝑔(𝑥)) and the output of the chained function
for input 𝑥 is denoted by ( 𝑓 ◦ 𝑔)(𝑥) or by 𝑓 (𝑔(𝑥)).

Let us bring in differentiation once again. Suppose function 𝑔 is differentiable at input 𝑡 and
function 𝑓 is differentiable at input 𝑔(𝑡). Is the chained function 𝑓 ◦ 𝑔 differentiable at 𝑎? An
equivalent question is: is there some number ♣ that satisfies the equation below?

( 𝑓 ◦ 𝑔)(𝑡 + 𝛼) = ( 𝑓 ◦ 𝑔)(𝑡) + ♣ · 𝛼 + |𝛼|𝑜𝛼(1) (2.10)

Let us begin with what we know. Differentiability of the function 𝑔 at 𝑡 and differentiability of
function 𝑓 at 𝑠 := 𝑔(𝑎) gives

𝑔(𝑡 + 𝛼) = 𝑔(𝑡) + 𝑔′(𝑡)𝛼 + |𝛼|𝑜𝛼(1), (2.11)
𝑓 (𝑠 + 𝛽) = 𝑓 (𝑠) + 𝑓 ′(𝑠)𝛽 + |𝛽|𝑜𝛽(1) (2.12)

where 𝑜𝛼(1) → 0 as 𝛼→ 0 and likewise, 𝑜𝛽(1) → 0 as 𝛽→ 0. The subscripts are back because there
are now two variables at play (𝛼 and 𝛽), and as a result, the notation 𝑜(1) is ambiguous.

We need to chain these expressions together, where the former is the input to the latter. In
particular, we are looking for an expression for ( 𝑓 ◦ 𝑔)(𝑡 + 𝛼). Since the input of the “outer"
function 𝑓 is the value 𝑔(𝑡 + 𝛼), this is the chain in our link. Define 𝛽 := 𝑔(𝑡 + 𝛼) − 𝑔(𝑡) so
that 𝑔(𝑡 + 𝛼) = 𝑔(𝑡) + 𝛽 = 𝑠 + 𝛽, which is exactly what we need to connect the two functions in
Equation 2.11 and Equation 2.12.

By Equation 2.11, 𝛽 := 𝑔(𝑡 + 𝛼) − 𝑔(𝑡) = 𝑔′(𝑡)𝛼 + |𝛼|𝑜𝛼(1), where 𝑔′(𝑡) is some constant. Since
𝑔′(𝑡)𝛼 = 𝑜𝛼(1), when we take 𝛼→ 0, then 𝛽→ 0 too. Therefore, 𝑜𝛽(1) = 𝑜𝛼(1).

Now let us consider the chained function 𝑓 ◦ 𝑔 together with our link. We have

( 𝑓 ◦ 𝑔)(𝑡 + 𝛼) = 𝑓 (𝑠 + 𝛽) = 𝑓 (𝑠) + 𝑓 ′(𝑠)𝛽 + |𝛽|𝑜𝛽(1)
= ( 𝑓 ◦ 𝑔)(𝑡) + 𝑓 ′(𝑠)

[
𝑔′(𝑡)𝛼 + |𝛼|𝑜𝛼(1)

]
+ |𝛽|𝑜𝛽(1)

= ( 𝑓 ◦ 𝑔)(𝑡) +
[
( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡)

]
𝛼 + 𝑓 ′(𝑠)|𝛼|𝑜𝛼(1) + |𝛽|𝑜𝛽(1)

= ( 𝑓 ◦ 𝑔)(𝑡) +
[
( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡)

]
𝛼 + |𝛼|𝑜𝛼(1) + |𝛽|𝑜𝛽(1)
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where we have used the fact that 𝑓 ′(𝑠) is a constant to obtain the final equality. In order to obtain
Equation 2.10, all we need to do is to check that |𝛼|𝑜𝛼(1) + |𝛽|𝑜𝛽(1) = |𝛼|𝑜𝛼(1).

It suffices to show that |𝛽|𝑜𝛽(1) = |𝛼|𝑜𝛼(1), because then |𝛼|𝑜𝛼(1)+|𝛽|𝑜𝛽(1) = |𝛼|𝑜𝛼(1)+|𝛼|𝑜𝛼(1) =
|𝛼|𝑜𝛼(1). We will use the two properties of an absolute value function from earlier. Using the
triangle inequality |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| and homogeneity |𝑐𝑎| = |𝑐||𝑎|, we have

|𝛽| =
��𝑔′(𝑡)𝛼 + |𝛼|𝑜𝛼(1)�� ≤ |𝑔′(𝑡)||𝛼| + |𝛼||𝑜𝛼(1)| = |𝑔′(𝑡)||𝛼| + |𝛼|𝑜𝛼(1).

Since 𝑜𝛽(1) = 𝑜𝛼(1), we have

|𝛽|𝑜𝛽(1)
|𝛼| ≤

(
|𝑔′(𝑡)||𝛼| + |𝛼|𝑜𝛼(1)

) 𝑜𝛽(1)
|𝛼| = 𝑜𝛽(1) + 𝑜𝛼(1)𝑜𝛽(1) = 𝑜𝛼(1) + 𝑜𝛼(1)𝑜𝛼(1) = 𝑜𝛼(1).

Recall that if | 𝑓 | ≤ 𝑜(1), then 𝑓 = 𝑜(1). Since |𝛽𝑜𝛽(1)/𝛼| ≤ 𝑜𝛼(1), we have |𝛽|𝑜𝛽(1)/|𝛼| = 𝑜𝛼(1), as
desired. Equation 2.10 is satisfied and we are done!

Theorem 2 (The Chain Rule). If 𝑔 is differentiable at 𝑡 and 𝑓 is differentiable at 𝑔(𝑡), then 𝑓 ◦ 𝑔 is
differentiable at 𝑡 with

( 𝑓 ◦ 𝑔)′(𝑡) = ( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡).

What if we want to chain more than two functions? Suppose 𝑓 , 𝑔, and ℎ are differentiable
functions and we want to find the derivative of the function that is the chain of all three function.
First, we must resolve some ambiguity: is 𝑓 ◦(𝑔◦ℎ) the same as ( 𝑓 ◦𝑔)◦ℎ? If not, then we might have
two different derivatives for the composition of three functions, which is a problem! Luckily, when
chaining functions (also called function composition), we are guaranteed that 𝑓 ◦(𝑔◦ℎ) = ( 𝑓 ◦𝑔)◦ℎ.
This guarantee is called associativity, and so function composition is said to be associative. To see
this, pick some input 𝑥. Then

[
𝑓 ◦ (𝑔 ◦ ℎ)

]
(𝑥) = 𝑓

(
(𝑔 ◦ ℎ)(𝑥)

)
= 𝑓

(
𝑔 (ℎ(𝑥))

)
. But this is the same

as
[
( 𝑓 ◦ 𝑔) ◦ ℎ

]
(𝑥) = ( 𝑓 ◦ 𝑔) (ℎ(𝑥)) = 𝑓

(
𝑔 (ℎ(𝑥))

)
.

Therefore, to take the derivative of a composition of three functions 𝑓 ◦𝑔◦ℎ, we may use the chain
rule to get

(
[ 𝑓 ◦ 𝑔] ◦ ℎ

) ′
= ([ 𝑓 ◦ 𝑔]′◦ℎ)· ℎ′ or equivalently

(
𝑓 ◦ [𝑔 ◦ ℎ]

) ′
=

(
𝑓 ′ ◦ [𝑔 ◦ ℎ]

)
· [𝑔◦ℎ]′. Both

will give the same answers, so we choose whichever one is more convenient. Just as the chaining
of three functions can be reduced to the case of two functions, the case of any finite number of
function composition can also be handled by the chain rule.

2.4 Higher Derivatives

We can continue to take derivatives repeatedly on a function, as long as the derivative exists at
each step. The interpretation is that if we wish to know an object’s acceleration, we need to calculate
the rate of change of the object’s velocity. The second derivative of a function is a generalization of
the concept of acceleration. The second derivative of a function 𝑓 is denoted by the symbol 𝑓 ′′ and
it is the derivative of the function 𝑓 ′. The derivative of 𝑓 ′′, if it exists, is written 𝑓 (3). The expression
𝑓 (𝑘)(𝑎) for a positive integer 𝑘 is the 𝑘-th derivative of function 𝑓 at point 𝑎. If 𝑘 = 1, then 𝑓 (1)(𝑎) is
the number 𝑓 ′(𝑎), while 𝑓 (0)(𝑎) is just the number 𝑓 (𝑎).
Challenge 7 For 0 ≤ 𝑘 ≤ 𝑛, the binomial coefficient

(
𝑛
𝑘

)
(read “𝑛 choose 𝑘") is the number of

ways we can choose an unordered selection of 𝑘 items from 𝑛 distinct items. For example, there
are 10 ways to choose 2 items from 5 elements (first we have 5 choices for the first item, then
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there are 4 choices for the second item, but since the order we drew which item does not matter,
we are double counting, which we account for by dividing by 2) and so

(5
2
)
= 10. In general,(

𝑛
𝑘

)
=

𝑛×(𝑛−1)×···×(𝑛−𝑘+1)
𝑘×(𝑘−1)×···×1 . In factorial notation, where 𝑘! := 𝑘 × (𝑘 − 1) × · · · 2 × 1 and 0! := 1, we have(

𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)! . Observe that
(
𝑛
0
)
=

(
𝑛
𝑛

)
= 1.

(a) Let 𝑓 be a polynomial of degree 𝑛. Convince yourself of the following equation.18

𝑓 (𝑥) =
𝑛∑
𝑘=0

𝑓 (𝑘)(0)
𝑘! 𝑥𝑘

[Hint: if 𝑓 : 𝑥 ↦→ 7𝑥5 + 2𝑥3 + 5, what is the expression above saying?]
(b) Let 𝑓 : 𝑥 ↦→ (𝑥 + 𝑏)𝑛 . Calculate 𝑓 (0)(𝑥), 𝑓 (1)(𝑥) and 𝑓 (2)(𝑥) and convince yourself that the

following holds.

𝑓 (𝑘)(𝑥) = 𝑘!
(
𝑛

𝑘

)
(𝑥 + 𝑏)𝑛−𝑘

(c) Apply the result of part (b) to part (a) to conclude that

(𝑥 + 𝑏)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘𝑏𝑛−𝑘

and substitute the symbol 𝑥 with the symbol 𝑎 to obtain the binomial formula.
The binomial formula has a nice combinatorial interpretation when 𝑎 and 𝑏 are both natural

numbers. If we have a pool of 𝑘 distinct items, from which we were to draw 𝑛 items sequentially
with replacement, there are 𝑘𝑛 possibilities (we make 𝑛 draws, where at each stage there are 𝑘
choices). Similarly, if we have a pool of 𝑘1 distinct items and a pool of 𝑘2 distinct items, from which
we were to select 𝑛 items sequentially, there are (𝑘1 + 𝑘2)𝑛 possibilities. This is because we could
pool each pile together each into one pile of 𝑘1 + 𝑘2 distinct items.

An alternative way to count the number of possibilities is to do the actual selection algorithmi-
cally, case by case. We could pick 𝑛 objects from 𝑘1, or 𝑛−1 objects from 𝑘1 and 1 object from 𝑘2. or
pick 𝑛−2 objects from 𝑘1 and 2 objects from 𝑘2, ..., or pick 0 objects from 𝑘1 and pick 𝑛 objects from
𝑘2. Adding all of these separate cases is exactly what the expression

∑𝑛
𝑖=0

(
𝑛
𝑖

)
𝑘𝑛−𝑖1 𝑘 𝑖2 means. Since

either way of counting must give the same results, we conclude that (𝑘1 + 𝑘2)𝑛 =
∑𝑛
𝑖=0

(
𝑛
𝑖

)
𝑘𝑛−𝑖1 𝑘 𝑖2.

2.5 Nonexamples

Nonexample 1: the absolute value function
Now that we have discussed some examples of derivatives, let us examine some nonexamples.

Consider the absolute value function 𝑓 : 𝑥 ↦→ |𝑥|. At the origin, for 𝛼 > 0, we have 𝑓 (0 + 𝛼) =
|0 + 𝛼| = |0| + 1|𝛼| = 𝑓 (0) + 1𝛼, and so it seems like we can conclude that the absolute value
function is differentiable at the origin, with 𝑓 ′(0) = 1. However, what if we take 𝛼 < 0? We cannot
stop anyone from taking 𝛼 < 0 because one person’s preferred orientation of the 𝑥 axis can be the
opposite of the other (see Figure 2.13).

18Since
𝑞∑

□=𝑝

ℎ(□)means ℎ(𝑝) + ℎ(𝑝 + 1) + · · · + ℎ(𝑞), we have
∑1
𝑗=0

𝑓 (𝑗)(0)
𝑗! 𝑥 𝑗 := 𝑓 (0)(0)

0! 𝑥0 + 𝑓 (1)(0)
1! 𝑥1.



DRAFT
2.5. NONEXAMPLES 27

𝑦

𝑥

1

1−1

𝑦

𝑥

1

−11

Figure 2.13: Changing the orientation of the 𝑥-axis changes nothing.

Then for 𝛼 < 0, we have 𝑓 (0 + 𝛼) = |0 + 𝛼| = −𝛼 = |0| − 𝛼 = 𝑓 (0) − 1𝛼. Thus there is a
disagreement on exactly what the value of 𝑓 ′(0) is, and derivatives are known to be unique. We
therefore conclude that the absolute value function is not differentiable at the origin.
Challenge 8 Recall that to use the chain rule ( 𝑓 ◦ 𝑔)′(𝑡) = ( 𝑓 ′ ◦ 𝑔)(𝑡) · 𝑔′(𝑡), we need both ( 𝑓 ′ ◦ 𝑔)(𝑡)
and 𝑔′(𝑡) to exist. We investigate whether derivatives of chained functions can exist even if one of
the component function is not differentiable.

(a) Let 𝑓 : 𝑥 ↦→ 𝑥2 and 𝑔 : 𝑥 ↦→ |𝑥|. We saw that 𝑔 is not differentiable at 0 and so 𝑔′(0) does not
exist. Nevertheless, show that ( 𝑓 ◦ 𝑔)′(0) and (𝑔 ◦ 𝑓 )′(0) both exist.

(b) The relu function (rectified linear unit) is defined by relu : 𝑥 ↦→ max(0, 𝑥). Sketch the relu
function. Show that the derivative of relu is zero for negative inputs, while for positive 𝑥,
relu′(𝑥) = 1. Furthermore, show that the relu function is not differentiable at 0.

(c) Let 𝑛 > 1 be a natural number and let 𝑓 : 𝑥 ↦→ 𝑥𝑛 . Show that even though the relu function
is not differentiable at 0, both ( 𝑓 ◦ relu)′(0) and (relu ◦ 𝑓 )′(0) exist.

(d) Let 𝑓 : 𝑦 ↦→ 𝑦 − relu(𝑦) and 𝑔 : 𝑥 ↦→ 1
2𝑥 + 1

2 relu(𝑥). Show that although neither 𝑓 ′(0) nor 𝑔′(0)
exist, both ( 𝑓 ◦ 𝑔)′(0) and (𝑔 ◦ 𝑓 )′(0) exist.

Nonexample 2: a step function
What is going on with the function graphed in Figure 2.14? It logs the position (denoted by the

symbol 𝑥 and measured in meters from some origin) of an object over time (denoted by the symbol
𝑡 and measured in seconds). The graph suggests that our object is perfectly still at all times, yet
has managed to teleport from one location to another instantaneously.

𝑥 [m]

𝑡 [s]

1
0

Figure 2.14: Graph of a function defined by 𝑡 ↦→ 1 for 𝑥 > 0 and 𝑡 ↦→ 0 for 𝑡 ≤ 0.

We cannot allow such a behavior. A function cannot have zero derivative (no velocity) and
be a non-constant function (display motion). In this case, the problem is that our function is not
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continuous at time 𝑡 = 0 due to an instantaneous teleportation.
How do we know if a function is continuous? Like a differentiable function, a function is

continuous if it is continuous at each point that the function is defined. How do we know if a
function 𝑓 is continuous at an input 𝑡? As with a derivative, first take some nonzero step 𝛼, which
is allowed to be either positive or negative. The difference between 𝑓 (𝑡 + 𝛼) and 𝑓 (𝑡) should then
drop to zero as we dial down 𝛼, that is, drop 𝛼→ 0.

Definition 3. A function 𝑓 is continuous at an input 𝑡 if 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡) = 𝑜(1).

For example, let us denote the function graphed in Figure 2.14 with the symbol 𝑔. Then for
𝛼 < 0, 𝑔(0 + 𝛼) − 𝑔(0) = 0 − 0 = 0 = 𝑜(1), but for 𝛼 > 0, we have 𝑔(0 + 𝛼) − 𝑔(0) = 1 − 0 = 1 ≠ 𝑜(1).
Therefore, function 𝑔 is not continuous at 0.

Continuity is not sufficient to guarantee differentiability, as the absolute value function demon-
strates. However, differentiable functions are always continuous. Indeed, if 𝑓 is differentiable at 𝑡,
then 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡) = 𝑓 ′(𝑡)𝛼 + |𝛼|𝑜(1). Drop 𝛼 → 0 and observe that 𝑓 ′(𝑡)𝛼 → 0 and |𝛼|𝑜(1) → 0,
and so 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡) = 𝑜(1) + 𝑜(1) = 𝑜(1).

Proposition 4. If a function is differentiable at an input 𝑡, then it is continuous at 𝑡.

Challenge 9 Consider a mystery function ℎ that satisfies the following: for each 𝑡, we have
ℎ(𝑡 + 𝛼) − ℎ(𝑡 − 𝛼) = 𝑜(1). Can we conclude that ℎ is continuous? If not, come up with a counter
example of a function that satisfies the given property, but is not continuous.

Nonexample 3: holes
Perhaps the simplest way to manufacture functions that are not continuous is by taking one

that is continuous, and puncturing a hole in it. Consider a function ℎ defined by 𝑡 ↦→ 1 if 𝑡 < 0
and 𝑡 ↦→ 1 if 𝑡 > 0. That is to say, ℎ is almost a constant function, but the function is not defined at
𝑡 = 1, and so the value ℎ(1) is undefined. Because we have introduced a hole, the function ℎ is not
continuous. In particular function ℎ is not continuous at 𝑡 = 1.

𝑥

𝑡

𝑓1

1

1
𝑥

𝑡

𝑓2

1

1 ∗ 𝑥

𝑡

𝑓2

1

1 ∗

Figure 2.15: A step function 𝑓1 and a step function 𝑓2 defined on a defective time axis.

Let us examine the step function once more. The leftmost graph in Figure 2.15 is a depiction
of the function 𝑓1, defined by 𝑡 ↦→ 1 for 𝑡 > 1 and 𝑡 ↦→ −1 for 𝑡 < 1. In particular, the function is
not defined on the point 1, and so the value 𝑓1(1) does not exist. As we discussed with the almost
constant function ℎ previously, the function 𝑓1 is not continuous at the point 𝑡 = 1.

However, there is a different type of hole we can introduce. Consider the function 𝑓2 depicted
in the middle of Figure 2.15. Just like the function 𝑓1, the function 𝑓2 is defined by the rules 𝑡 ↦→ 1
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for 𝑡 > 1 and 𝑡 ↦→ −1 for 𝑡 < 1. The difference here is that we pretend that the point 𝑡 = 1 does not
exist by introducing a hole in the time axis. Thus the function 𝑓2 cannot be defined at 𝑡 = 1 even if
we wanted to. This was not the case with our previous step function 𝑓1.

If the function 𝑓2 continuous? Surprisingly, yes! Even though we have introduced a hole, the
function turns out to be continuous.

To check that a function is continuous, we have to make sure that the function is continuous at
each point it is defined. There are two cases to check: points greater than 1 and points less than 1.
The latter case is essentially the same as the previous case, so let us consider the case of 𝑡 > 1. It is
visually simple to check that for points far away from 𝑡 = 1, the function 𝑓2 is continuous. So let us
pick a point very close to 𝑡 = 1, the point ∗ shown in the middle graph of Figure 2.15. But notice
that the units we use to measure time is completely arbitrary. So we may “zoom in" by introducing
a smaller unit of time so that the distance between 𝑡 = 1 and ∗ is much more pronounced.19 Now
there is no problem in seeing that function 𝑓2 is also continuous at point ∗.

Isn’t the function 𝑓2 not continuous at 𝑡 = 1? That is an invalid question, because time 𝑡 = 1
does not exist. The function 𝑓2 is continuous everywhere it can be defined on.

Completeness

At this point, we have broken calculus. We can have continuous functions describing the
positions of objects teleporting at will. In such a setting, trying to sensibly ascribe velocity becomes
impossible.

In order to prevent this from happening and to keep calculus intact, we must insist that the
number axis we are dealing with has no holes. To fix this problem, let us return back to the step
function 𝑓2. We observed the fact that no matter how “close" we got to 𝑡 = 1, by a suitable choice
of units, we discovered that we were in fact “not close" to 𝑡 = 1. Among the numbers 𝑡 > 1, there
is no smallest number which is objectively “close" to the number 1. All of them can be made “not
close" to 𝑡 = 1.

We have previously encountered the concept of a smallest number. In our proof of the power
rule, we used the fact that if we have a nonempty collection of natural numbers, then there must be
a smallest element. This is the well-ordering principle. This principle doesn’t hold here, because
there is no smallest number among 𝑡 > 1.

Actually, it is even easier to break the well-ordering principle. Recall that the integers are the
collection of natural numbers and its negative counterparts. The integers are thus the numbers
−1,−2,−3, . . . , as well as the usual 0, 1, 2, 3, . . . from the natural numbers. The integers do not obey
the well-ordering principle because if we consider a collection of negative integers −1,−2,−3, . . . ,
this collection has no smallest element.

Nevertheless, this situation can be fixed. If we consider nonempty collections of integers whose
members are all above a certain lower limit, then there has to be a smallest integer. The well-
ordering principle of the natural numbers is itself a special case of this, for it states that anytime we
have a collection of integers that are not negative, and thus greater than −1, there will always be
a smallest element. We say that −1 is a lower bound of the natural numbers, or equivalently, that
the natural numbers is bounded from below by −1. In fact, any negative integer is a lower bound

19You might object that if we use a different unit of time, then the meaning of 1 has changed. If this bothers you, replace
the hole in our time axis by 0. This choice was not made to enhance legibility.
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of natural numbers. This allows us to apply the well-ordering principle to nonempty collections of
integers bounded from below.

We now import this fix. Going back to our step function 𝑓2 and our defective time axis, the
collection of numbers 𝑡 > 1 was bounded from below (by numbers smaller than 1), but there was
no smallest number. We have already visually seen that there cannot be a smallest number 𝑡 > 1
by zooming in our graph,20 so let us approach this from the other side with numbers 𝑡 < 1. These
numbers form the lower bounds of the numbers 𝑡 > 1. Is there a largest?

By a set, we mean a collection of objects. If we can list out the objects of a set (called elements
of a set), then we list out the objects between the braces { and }. For example, if 𝑆 is a set of natural
numbers less than 5, then we can write 𝑆 = {0, 1, 2, 3, 4} (the order of the elements is immaterial).
A set with no elements is called an empty set and is denoted by the symbol ∅. Thus ∅ = {}.

A number system is complete (in the sense of not having holes) if each set of numbers (from
the number system) that is bounded from below, a greatest among all the lower bounds always
exists. The greatest among all the lower bounds of the set is called the greatest lower bound or the
infimum of the set. As a shorthand, the infimum of a set 𝑆 is denoted by “inf 𝑆".

We saw from function 𝑓2 that calculus requires a complete number system. The number system
we use, represented as an axis on a graph, is called the real numbers. The symbol for denoting
the set of real numbers is ℝ. If 𝑇 is the set of real numbers greater than 1, then inf𝑇 = 1. Our
problem with function 𝑓2, or rather, our defective number system, was that inf𝑇 was not a part of
the number system. Real numbers do not have this problem with holes because the number 1, and
indeed any value of length or value of time we can think of, can be depicted on a line (as we have
done so far), and are real numbers. In symbols, we write 1 ∈ ℝ to mean that 1 is a member of (or
is an element of) the set of real numbers ℝ. More generally, we write 𝑎 ∈ 𝑆 to mean that 𝑎 is an
element of the set 𝑆 and we write 𝑏 ∉ 𝑆 to mean that 𝑏 is not an element of set 𝑆.

As emphasized many times before, the orientation of an axis is completely arbitrary. Just as a
direction of left to one is a direction of right to another, a negative number is a positive number
to another. Thus the set of real numbers ℝ also has the equivalent property that: each set of real
numbers that is bounded from above has a smallest among all the upper bounds. The smallest
among upper bounds is called the least upper bound or the supremum of the set. If a set 𝑆 has a
least upper bound, we denote the supremum using the symbol “sup 𝑆". A set is bounded if it is
both bounded from above and bounded from below.

If we take a positive 𝛼 and then drop 𝛼 → 0, the symbol zero denotes the infimum of the set
of positive real numbers. Similarly, if we take a negative 𝛼 and then up 𝛼 → 0, the symbol zero
denotes the supremum of the set of negative real numbers.

The natural numbers (denoted by the symbol ℕ) and the integers (denoted by the symbol ℤ)
are not complete and are thus not sufficient for calculus. For example, we cannot describe lengths
or times with decimal points using integers. Surprisingly, fractions are not sufficient either. The
rational numbers (denoted by the symbol ℚ) are the numbers of the form 𝑎

𝑏 , where 𝑎 is an integer
and 𝑏 is a nonzero natural number. For example, 0.1 = 1

10 and so 0.1 is a rational number.
The classic counterexample is that the diagonal length of a square with side length 1 cannot be

expressed as a fraction. We will not pursue such theoretical issues further, as we wish to return
to calculus. We will simply be content that there is a complete number system that has no holes

20An alternative way to see this is that if someone claims that ∗ is the smallest among the numbers 𝑡 > 1, then (∗ − 1)/2
is even smaller! In fact, it is halfway between 1 and ∗.
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called the real numbers in which we can do calculus in, and that we no longer have problems with
instantaneous teleportation and the like. In particular, motion cannot happen in the absence of
velocity. Or in calculus language, if 𝑓 ′ = 0, then 𝑓 is a constant function.

Intervals

Of course, if velocity of an object is zero during a time interval, then we know its position must
be constant. Thus the notion of an interval will be useful as we discuss displacement arising from
motion starting at one time and ending at another time. In order to make calculus work, we will
be working with subsets of the set of real numbers ℝ. If 𝑆 is a set, then 𝐴 is a subset of 𝑆 (written
𝐴 ⊂ 𝑆) if each element of 𝐴 is an element of 𝑆. The following are some convenient notation to
specify connected subsets of ℝ. For real numbers 𝑎 and 𝑏 with 𝑎 < 𝑏:

(a) the symbol (𝑎, 𝑏) denotes the set of real numbers 𝑥 such that 𝑎 < 𝑥 < 𝑏,
(b) the symbol [𝑎, 𝑏] denotes the set of real numbers 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏,
(c) the symbol [𝑎, 𝑏) denotes the set of real numbers 𝑥 such that 𝑎 ≤ 𝑥 < 𝑏,
(d) the symbol (𝑎, 𝑏] denotes the set of real numbers 𝑥 such that 𝑎 < 𝑥 ≤ 𝑏.

Sometimes, the symbols∞ and −∞ are used in a similar context. For each real number 𝑎:
(a) the symbol (−∞, 𝑎) denotes the set of real numbers 𝑥 such that 𝑥 < 𝑎,
(b) the symbol (𝑎,∞) denotes the set of real numbers 𝑥 such that 𝑎 < 𝑥,
(c) the symbol (−∞, 𝑎] denotes the set of real numbers 𝑥 such that 𝑥 ≤ 𝑎,
(d) the symbol [𝑎,∞) denotes the set of real numbers 𝑥 such that 𝑎 ≤ 𝑥,
(e) the symbol (−∞,∞) is another way to denote the set of real numbers ℝ.

The nine sets defined above are called intervals. To distinguish the intervals involving the symbols
∞ or −∞ from those that do not, intervals defined by real numbers only (the first four kinds)
are called finite intervals. There is a potential source of confusion since the ordered pair of real
numbers (𝑎, 𝑏)may mean an interval or a coordinate on the 𝑥-𝑦 plane.21 Whether the ordered pair
means an interval or a coordinate will be clear from the context.

An open interval is an interval that does not contain its endpoints. Thus the intervals (𝑎, 𝑏),
(−∞, 𝑎), (𝑎,∞), (−∞,∞) are open intervals. On the other hand, an interval is a closed interval if
it is an interval that contains all real numbers between the endpoints, inclusive. Thus [𝑎, 𝑏] is a
closed interval, but so are [𝑎,∞) and (−∞, 𝑎] because these intervals also contain all real numbers
between the endpoints, inclusive (the symbols∞ and −∞ are not real numbers).22

We can combine two intervals into one by taking their common elements. If 𝑆 and 𝑇 are sets
then 𝑆 ∩ 𝑇 (read “𝑆 intersection 𝑇") is defined to be the set of elements in 𝑆 that are also elements
of 𝑇. Thus {1, 2} ∩ {2, 3} = {2}, {1, 2} ∩ {3, 4} = ∅, ∅ ∩ {1} = ∅, and (0, 2) ∩ (1, 3) = (1, 2).

We can also combine two intervals into one by “joining" them together. If 𝑆 and 𝑇 are sets then
𝑆∪𝑇 (read “𝑆 union 𝑇") is defined to be the set of elements in 𝑆 that are also elements in 𝑇. Hence
{1, 2} ∪ {2, 3} = {1, 2, 3}, ∅ ∪ {1} = {1}, and (0, 1] ∪ [1, 2) = (0, 2).

21For example, an object at position 5 m to the right of the origin at time 8 s can be denoted (5, 8)which is not an interval.
22When we speak of an interval (𝑎, 𝑏) or an interval [𝑎, 𝑏], we assume that 𝑎 < 𝑏.
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Integration

The following optional Challenge is designed to get us into the mood for discussing displace-
ments. In particular, all the symbols mean something physical. Our discussion in the first section
of this chapter will be especially simple to understand and easy to remember if we stay grounded
in the physical world.
Challenge 10 Consider an object constrained to motion along a line. Let 𝑡 be the time since we
started to keep track of the object and denote the object’s initial position by the constant 𝑥𝑖 and the
object’s initial velocity by the constant 𝑣𝑖 . The object’s position is denoted by 𝑥(𝑡) and its velocity
is denoted by 𝑣(𝑡). To simplify matters, assume the object is under constant acceleration 𝑎 (this
constant could be positive, negative or zero).

(a) Our object’s position 𝑥 may be calculated using the initial position 𝑥𝑖 , initial velocity 𝑣𝑖 ,
current velocity 𝑣, and time 𝑡. Use dimensional analysis and apply a simple case (or common
sense) to find the formula for 𝑥. What does the formula say?

(b) Repeat part (a), but this time use acceleration 𝑎 in place of velocity 𝑣.
(c) Our objects’s velocity 𝑣 may be calculated from the initial position 𝑣𝑖 , acceleration 𝑎 and time

𝑡. Use dimensional analysis and apply some simple cases to find the formula for 𝑣.
(d) The squared velocity 𝑣2 can be calculated from the initial velocity 𝑣𝑖 , acceleration 𝑎, and

displacement 𝑥 − 𝑥𝑖 . Use dimensional analysis and apply some simple cases to find the
formula for 𝑣2.1

(e) Use the derivative rules to show that your answer from part (b) gives the correct velocity and
acceleration for our object. Verify your formula from part (d) by taking the time derivative of
the formula from part (b), solving for time 𝑡, and then plugging the formula for 𝑡 back into
the formula from part (b).

The formulas are also called the big four kinematics equations.

𝑥 = 𝑥𝑖 +
𝑣𝑖 + 𝑣

2 𝑡 𝑥 = 𝑥𝑖 + 𝑣𝑖𝑡 +
𝑎

2 𝑡
2

𝑣 = 𝑣𝑖 + 𝑎𝑡 𝑣2 = 𝑣2
𝑖 + 2𝑎(𝑥 − 𝑥𝑖)

1Hint: Although time 𝑡 does not make an appearance in this formula, to check cases, nothing is stopping us from for
example, taking 𝑡 = 1 to simplify values of 𝑥 − 𝑥𝑖 and 𝑣.

33
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3.1 The Fundamental Theorems

Displacements
We studied velocity in the previous chapter, in particular, velocity functions and arithmetic with

velocity functions. In this chapter, we will examine displacements and displacement functions.
For simplicity, we will only consider objects in motion along a line moving back and forth.

Suppose we have some velocity function 𝑓 at hand. As we saw in the previous section, there
are headaches with functions that are not continuous, so we will always assume 𝑓 is continuous.
Furthermore, it is tricky to talk about displacements with unbounded velocity. We will assume
our velocity function 𝑓 is bounded, at the very least within the time interval we are considering (a
function is bounded if the set of its outputs are bounded from above and below by real numbers).
In order to calculate the displacement of an object between an initial time 𝑡𝑖 and final time 𝑡 𝑓 , we
could follow these basic steps.

First, we divide the time interval into smaller chunks. Second, for each smaller time interval
we pick some representative value of 𝑓 . The velocity function 𝑓 is assumed to be bounded, so we
may take the supremum or infimum of the values of 𝑓 in that time interval. The third and final
step: for each time interval [𝑡𝑖 , 𝑡 𝑗], we calculate an estimate of displacement during that time with
(𝑡 𝑗 − 𝑡𝑖) × inf 𝑓 or (𝑡 𝑗 − 𝑡𝑖) × sup 𝑓 , depending on our choice made in step two, then add all the
estimates up.

These steps are simply a more detailed version of what we could imagine how a car’s odometer
calculates distance travelled using information from its speedometer: (i) given some time interval,
(ii) pick a representative speed during that time interval, and (iii) multiply the representative speed
with the time interval and accumulate to the previous estimate of distance travelled.2

Alternatively, we could view these steps as describing properties of displacement.
(a) We ‘break down" a time interval into smaller chunks because our displacement during the

day from 9AM (𝑡0) to 9PM (𝑡2) is the same as accumulating our displacement from 9AM (𝑡0)
to noon (𝑡1) with our displacement from noon (𝑡1) to 9PM (𝑡2).

(b) Our estimate for displacement can change depending on our representative velocity chosen,
because for an object traveling in one direction, a faster velocity leads to greater displacement.

(c) We estimate our displacement during a time interval as if we are moving at a constant velocity
at that time interval with the representative velocity. With this assumption, our displacement
is given by the product of our representative velocity with the length of the time interval.

It will be convenient to introduce a notation due to Gottfried Leibniz and Joseph Fourier. If 𝑓
is a velocity function, then the displacement from time ♠ to time ♥ is denoted by the symbol∫ ♥

♠
𝑓 ( ) 𝑑

where the two boxes may be replaced by your choice of exactly one symbol, with the exception
of the symbols used to represent the time endpoints—in this case ♠ and ♥. For example,

∫ ♥
♠ 𝑓 (𝑥) 𝑑𝑥

and
∫ ♥
♠ 𝑓 (𝑡) 𝑑𝑡 will both be equally acceptable. The reason we need the box is that the velocity

2A car’s odometer measures distance travelled by looking at speed, which is the absolute value of velocity. We are
looking to measure displacement by looking at velocity. What’s the difference? We can reverse our car and create negative
velocity, reducing displacement, but we cannot reduce an odometer reading by driving our car in reverse.
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function 𝑓 may have several symbols and we will need to distinguish the constants from the
variables. For example, suppose we have a velocity function 𝑓 : 𝑡 ↦→ 𝑎𝑡2+𝑏𝑡+ 𝑐, for some constants
𝑎, 𝑏, and 𝑐. Then we will denote the displacement from time 𝑡𝑖 to time 𝑡 𝑓 by

∫ 𝑡 𝑓

𝑡𝑖
(𝑎𝑡2 + 𝑏𝑡 + 𝑐) 𝑑𝑡. As

another example, suppose we have a different velocity function 𝑔 : 𝑥 ↦→ 𝛼𝑥 + 𝛽, for some constants
𝛼 and 𝛽. Then we will denote the displacement from time 𝑎 to time 𝑏 by

∫ 𝑏

𝑎
(𝛼𝑥 + 𝛽) 𝑑𝑥.

We recast our properties using this new notation for some continuous and bounded function 𝑓 .
(P1) Displacement from time 𝑡0 to time 𝑡2 is the same as the displacement from time 𝑡0 to time 𝑡1

added to the displacement from time 𝑡1 to 𝑡2.∫ 𝑡2

𝑡0

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑡1

𝑡0

𝑓 (𝑡) 𝑑𝑡 +
∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡

(P2) If 𝑤 is some continuous and bounded function with 𝑣(𝑡) ≤ 𝑤(𝑡) for each 𝑡 ∈ (𝑡𝑖 , 𝑡 𝑓 ), then∫ 𝑡 𝑓

𝑡𝑖

𝑣(𝑡) 𝑑𝑡 ≤
∫ 𝑡 𝑓

𝑡𝑖

𝑤(𝑡) 𝑑𝑡.

Consistently faster objects exhibit greater displacement.
(P3) If 𝑣 is a constant function 𝑣 : 𝑡 ↦→ 𝑐 for some constant 𝑐, over a time interval 𝑡𝑖 to 𝑡 𝑓 , then∫ 𝑡 𝑓

𝑡𝑖

𝑣(𝑡) 𝑑𝑡 := 𝑐(𝑡 𝑓 − 𝑡𝑖).

Objects traveling at a constant velocity have a simple formula for calculating displacement.
In property 1, that is (P1), there is no restriction that time 𝑡1 be between 𝑡0 and 𝑡2. To see how this
works, imagine watching a marathon from start to finish. If we rewind the marathon footage, we
will see marathoners running −42.195 km. The marathoners will need to run 42.195 km to return
to the finish line. So there is no problem calculating the displacement of an object from 9PM to
9AM of the same day, as long as we put on a minus sign at the end. In symbols, our convention is∫ 𝑡 𝑓

𝑡𝑖

𝑓 (𝑡) 𝑑𝑡 = −
∫ 𝑡𝑖

𝑡 𝑓

𝑓 (𝑡) 𝑑𝑡. (3.1)

While we are on the subject of technicalities, recall that even if we are standing perfectly still,
because the earth is moving, so are we. Thus we get a boost exceeding 1600 km/hr (exact figure
depends on our location), even if we are staying perfectly still. To account for such differences,
we can take our original velocity function 𝑓 and subtract some predetermined constant 𝑣, where
𝑣 could be 1600 km/hr. In such a case, the displacement between time 𝑡𝑖 and time 𝑡 𝑓 could
be denoted by

∫ 𝑡 𝑓

𝑡𝑖

(
𝑓 (𝑡) − 𝑣

)
𝑑𝑡,3 where we have subtracted the velocity due to earth’s motion.

Alternatively, we could continue to measure displacements as before, and only when we need to
conform to other conventions, make up for the difference. This is done using property (P3) to
calculate

∫ 𝑡 𝑓

𝑡𝑖
𝑓 (𝑡) 𝑑𝑡 − 𝑣(𝑡 𝑓 − 𝑡𝑖). This establishes the equality:∫ 𝑡 𝑓

𝑡𝑖

(
𝑓 (𝑡) − 𝑣

)
𝑑𝑡 =

∫ 𝑡 𝑓

𝑡𝑖

𝑓 (𝑡) 𝑑𝑡 − 𝑣(𝑡 𝑓 − 𝑡𝑖). (3.2)

3Here, 𝑣 is being used as a constant function. Thus
∫ 𝑡 𝑓
𝑡𝑖

𝑓 (𝑡) − 𝑣(𝑡) 𝑑𝑡 would mean the same thing.
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First fundamental theorem of calculus

In our study of differentiation in Chapter 2, we were interested in velocity functions, rather than
velocity itself. Likewise, we will turn our attention to displacement functions. From some initial
time 𝑡𝑖 , we define a displacement function 𝐹 associated to a velocity function 𝑓 as the function

𝐹 : 𝑡 ↦→
∫ 𝑡

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥.

The first thing we should note is that the rate of change of a displacement should be its velocity.
That is, we expect

𝐹′ = 𝑓 . (3.3)

We can also write Equation 3.3 with the symbol d
d𝑡 , which means differentiate with respect to 𝑡

d
d𝑡

∫ 𝑡

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑡).

Let us verify that this is indeed the case. We take a bounded function 𝑓 that is continuous at 𝑡.
Define the displacement function 𝐹 : 𝑡 ↦→

∫ 𝑡

𝑡𝑖
𝑓 (𝑥) 𝑑𝑥, measured from some initial time 𝑡𝑖 . What we

want to show is that
𝐹(𝑡 + 𝛼) = 𝐹(𝑡) + 𝑓 (𝑡)𝛼 + |𝛼|𝑜(1).

To achieve this, it is sufficient to show that��𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼
�� ≤ |𝛼|𝑜(1).

Analogous to the steps for estimating displacements, we first consider a time slice of nonzero
length 𝛼:

𝐹(𝑡 + 𝛼) − 𝐹(𝑡).

By property (P1), we have

𝐹(𝑡 + 𝛼) − 𝐹(𝑡) =
∫ 𝑡+𝛼

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥 −
∫ 𝑡

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑡+𝛼

𝑡

𝑓 (𝑥) 𝑑𝑥.

We will define 𝑓 (𝑡) to be our base level for velocity (just as we established the speed of the earth to
be the base level for velocity by subtracting the speed of the earth in Equation 3.2). To match units,
we multiply 𝑓 (𝑡) by 𝛼 and subtract to get

𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼 =

∫ 𝑡+𝛼

𝑡

𝑓 (𝑥) 𝑑𝑥 − 𝑓 (𝑡)𝛼.

Using Equation 3.2, and applying absolute values everywhere to suppress questions about the sign
of 𝛼, we have ��𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼

�� = ����∫ 𝑡+𝛼

𝑡

𝑓 (𝑥) − 𝑓 (𝑡) 𝑑𝑥
���� .
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Next, we move on to the second step of the estimation of displacements: we will pick a represen-
tative velocity for the time interval from time 𝑡 to 𝑡 + 𝛼. In particular, we know 𝑓 is bounded,4
so there is a least upper bound for the values of the function 𝑓 during the time interval [𝑡 , 𝑡 + 𝛼].
In fact, since 𝑓 (𝑡) is a constant, there will be a least upper bound for the values of the function
| 𝑓 − 𝑓 (𝑡)| during the time interval [𝑡 , 𝑡 + 𝛼], which we will denote by sup𝑥∈[𝑡 ,𝑡+𝛼] | 𝑓 (𝑥) − 𝑓 (𝑡)|. We
take this as the representative and use property (P2) to obtain the following.

��𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼
�� = ����∫ 𝑡+𝛼

𝑡

𝑓 (𝑥) − 𝑓 (𝑡) 𝑑𝑥
���� ≤ �����∫ 𝑡+𝛼

𝑡

sup
𝑥∈[𝑡 ,𝑡+𝛼]

| 𝑓 (𝑥) − 𝑓 (𝑡)| 𝑑𝑥
�����

Finally, we move on to the final step of the estimation of displacements. By property (P3),

��𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼
�� ≤ �����∫ 𝑡+𝛼

𝑡

sup
𝑥∈[𝑡 ,𝑡+𝛼]

| 𝑓 (𝑥) − 𝑓 (𝑡)| 𝑑𝑥
����� = |𝛼| sup

𝑥∈[𝑡 ,𝑡+𝛼]
| 𝑓 (𝑥) − 𝑓 (𝑡)|.

Now let us imagine reducing the time interval by taking 𝛼 → 0. Then each point 𝑥 in the time
interval [𝑡 , 𝑡 + 𝛼] drops to 𝑡. Hence as 𝛼 → 0, 𝑥 drops to 𝑡, and by continuity of 𝑓 at time 𝑡:
𝑓 (𝑥) − 𝑓 (𝑡) = 𝑜𝛼(1). Thus sup𝑥∈[𝑡 ,𝑡+𝛼] | 𝑓 (𝑥) − 𝑓 (𝑡)| = 𝑜𝛼(1). Therefore,

𝐹(𝑡 + 𝛼) − 𝐹(𝑡) − 𝑓 (𝑡)𝛼 = |𝛼|𝑜𝛼(1)

and we conclude that 𝐹 is differentiable at 𝑡 with 𝐹′(𝑡) = 𝑓 (𝑡).5

Theorem 5 (First Fundamental Theorem of Calculus). Suppose 𝑓 is a bounded function defined
on a closed interval [𝑡𝑖 , 𝑡 𝑓 ] that is continuous on 𝑡 ∈ [𝑡𝑖 , 𝑡 𝑓 ] and we take

𝐹 : 𝑡 ↦→
∫ 𝑡

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥.

Then 𝐹 is differentiable at 𝑡 with 𝐹′(𝑡) = 𝑓 (𝑡).

This important result shows that we can generalize our intuitive idea that the rate of change of
a displacement is its velocity, and apply them to functions beyond velocities and displacements.
Just like we generalized the concept of a velocity into the notion of a derivative, we now generalize
the notion of a displacement. The objects with the symbol

∫
that obey properties (P1), (P2), (P3),

and Equation 3.2 are called integrals. The calculation of integrals is called integration.

There are several types of integrals. Suppose we have an integral 𝐼 :=
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥. If 𝑏 is a

constant, then 𝐼 is a real number (generalizing “displacement"). If 𝑏 is a variable, then the integral
𝐼 is a function 𝐼 : 𝑏 ↦→

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 (generalizing a “displacement function"). The latter is bad style,

for we expect 𝑏 to be a symbol for a constant, not a variable. It would be better in this case, as an
example, to define 𝐼 : 𝑡 ↦→

∫ 𝑡

𝑎
𝑓 (𝑥) 𝑑𝑥 or 𝐼 : 𝑥 ↦→

∫ 𝑥

𝑎
𝑓 (𝑡) 𝑑𝑡.

4Recall that if something is bounded, it has both an upper bound and a lower bound
5Notice that it was necessary to take absolute values, for if 𝐹(𝑡 + 𝜖) − 𝐹(𝑡) − 𝑓 (𝑡)𝜖 ≤ |𝜖|𝑜(1), we cannot conclude that

𝐹(𝑡 + 𝜖) − 𝐹(𝑡) − 𝑓 (𝑡)𝜖 = |𝜖|𝑜(1). Negative functions are smaller than 𝑜(1), but are not necessarily 𝑜(1). As we discussed in
Section 2.2, if |𝐹(𝑡 + 𝜖) − 𝐹(𝑡) − 𝑓 (𝑡)𝜖| ≤ |𝜖|𝑜(1), then we know that 𝐹(𝑡 + 𝜖) − 𝐹(𝑡) − 𝑓 (𝑡)𝜖 = |𝜖|𝑜(1)
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There is yet another type of integral. Compare the expression
(
𝑥2

2

) ′
= 𝑥 with the expression

𝐹′ = 𝑓 from the Fundamental Theorem of Calculus (Equation 3.3). We see that 𝐹 := 𝑥2

2 has an
interpretation of a “displacement function" for the “velocity function" 𝑓 : 𝑥 ↦→ 𝑥. However, 𝑥2

2 is
not unique in this regard. For example ( 𝑥2

2 + 1)′ = 𝑥, ( 𝑥2

2 + 2)′ = 𝑥, and so on. This makes sense,
for there are infinitely many conventions to measure displacements: one convention where the
measurement starts from the King’s palace, one convention where the measurement starts from
the library, etc. It is natural to classify all such functions into one group.

The antiderivative or the indefinite integral of a function 𝑓 , written
∫
𝑓 ( ) 𝑑 is the set of

functions whose derivative is 𝑓 .6 For example,
∫
𝑥 𝑑𝑥 = 𝑥2

2 + 𝑐, where 𝑐 denotes the arbitrary
constant representing the degree of freedom in choosing where we can set the origin for measuring
“displacements". In contrast to the indefinite integral, integrals of the form

∫ ♥
♠ 𝑓 ( ) 𝑑 are called

definite integrals. For example,
∫ 𝑏

𝑎
𝑥 𝑑𝑥 is a definite integral.

Second fundamental theorem of calculus

Now that we have discussed a fair bit about displacement functions, we now turn to the
natural question: how to do we calculate displacements? For example, what is the real number
corresponding to the definite integral

∫ 1
0 𝑥 𝑑𝑥?

To make this concrete, let us imagine that we are walking up a very long stairwell and we wish
to measure how much height we have traversed. One way would be count the number of steps per
second say, and add them all up.

An easier way would be to use an altimeter, any one that works, and then (i) measure our
altitude at the beginning of the journey and (ii) measure our altitude at the end of our climb, then
(iii) calculate: final altitude − beginning altitude.

Notice how the altitude the altimeter is calibrated to makes no difference to the result: whether
the altitude begins at sea level, or the peak of Mount Everest at a certain year, they are both ok.
However, it is crucial that we stick to the same altimeter. If we swap out one for another in the
middle, then this method is no good.

Let us use this thinking to calculate the definite integral
∫ 1

0 𝑥 𝑑𝑥. We know from our discussion
before that

∫
𝑥 𝑑𝑥 = 𝑥2

2 + 𝑐. Pick an “altimeter"—we’ll pick 𝑥2

2 + 3.141592. At the start time of
𝑡𝑖 = 0, we have an altimeter reading of 02

2 + 3.14192. At the end time of 𝑡 𝑓 = 1, we have an altimeter
reading of 12

2 + 3.141592. Subtract the former reading from the latter and we see that
∫ 1

0 𝑥 𝑑𝑥 = 1
2 .

Let us see how our method could fail. Well, if we are allowed to move about with sudden
jumps, or move with zero velocity (Examples 2 and 3 in Section 2.5), then our method will not
work. So we will only be able to apply this method to continuous functions, and we will have to
disallow instantaneous teleportations (motion without velocity). By working with real numbers
(Section 2.5), we do not have to worry about the latter, for a function with zero derivative (no
velocity) will be a constant function (no motion).

6This is analogous to the expression 𝑜(1), since 𝑜𝛼(1) is actually a collection of functions that drop to zero as 𝛼 → 0.
Even though antiderivatives and 𝑜(1) are sets of functions, we treat them like functions.
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Now let us verify that our method works. Consider a continuous function 𝑓 , and let 𝐹 be an
antiderivative of 𝑓 . The “manual way" of calculating “altitude" can be expressed by the symbol∫ 𝑥

𝑎
𝑓 (𝑡) 𝑑𝑡. By the Fundamental Theorem of Calculus,

d
d𝑥

∫ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡 = d
d𝑥 𝐹(𝑥).

The subtraction rule for derivatives tells us that 𝑔′ = ℎ′ is equivalent to (𝑔 − ℎ)′ = 0, and so

d
d𝑥

(∫ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡 − 𝐹(𝑥)
)
= 0.

Since the derivative is zero and instantaneous teleportations are not permitted, the function inside
the brackets must be a constant function:∫ 𝑥

𝑎

𝑓 (𝑥) 𝑑𝑥 − 𝐹(𝑥) = 𝑐.

To find the value of the constant, we will evaluate the function at the starting time 𝑎 and use the
third property of an integral (P3) to obtain the following.

𝑐 =

∫ 𝑎

𝑎

𝑓 (𝑥) 𝑑𝑥 − 𝐹(𝑎) = 0 − 𝐹(𝑎)

Theorem 6 (Second Fundamental Theorem of Calculus). If 𝑓 is bounded and continuous on a
closed interval [𝑡𝑖 , 𝑡 𝑓 ]with antiderivative 𝐹, then∫ 𝑡 𝑓

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥 = 𝐹(𝑡 𝑓 ) − 𝐹(𝑡𝑖).

Sometimes we will find it convenient to use the shorthand

𝐹(𝑥)
���𝑡 𝑓
𝑥=𝑡𝑖

:= 𝐹(𝑡 𝑓 ) − 𝐹(𝑡𝑖).

For example, ∫ 1

0
𝑥 𝑑𝑥 =

𝑥2

2

����1
𝑥=0

:= 12

2 −
02

2 =
1
2 .

Here is a comment on the theorem. The right hand side is not a definition of the definite integral
on the left. The theorem simply says that if an antiderivative is available, then there is a shortcut to
computing the definite integral. A particular altimeter from one manufacturer is not the definition
of the elevation of a location, but it we have one available, why not use it?

3.2 Arithmetic of Displacements

We now port some of the essential differentiation rules we obtained in Chapter 2 for use with
integrals.
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Linearity of Integrals

Recall that ( 𝑓 + 𝑔)′ = 𝑓 ′+ 𝑔′ and (𝑐 𝑓 )′ = 𝑐 𝑓 ′ for real 𝑐. Suppose 𝑓 and 𝑔 are continuous and thus
have antiderivatives 𝐹 and 𝐺, respectively. Ignoring the arbitrary constants (which are subsumed),
we have ∫

( 𝑓 + 𝑔) = (𝐹 + 𝐺) =
∫

𝑓 +
∫

𝑔

∫
(𝑐 𝑓 ) = 𝑐𝐹 = 𝑐

∫
𝑓 .

Similarly, ∫ 𝑏

𝑎

( 𝑓 + 𝑔)(𝑥) 𝑑𝑥 = (𝐹 + 𝐺)(𝑏) − (𝐹 + 𝐺)(𝑎) = [𝐹(𝑏) − 𝐹(𝑎)] + [𝐺(𝑏) − 𝐺(𝑎)]

=

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 +
∫ 𝑏

𝑎

𝑔(𝑥) 𝑑𝑥.

and ∫ 𝑏

𝑎

(𝑐 𝑓 )(𝑥) 𝑑𝑥 = (𝑐𝐹)(𝑏) − (𝑐𝐹)(𝑎) = 𝑐[𝐹(𝑏) − 𝐹(𝑎)] = 𝑐

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Integration by parts

Is there an analogue of the product rule ( 𝑓 𝑔)′ = ( 𝑓 ′𝑔) + ( 𝑓 𝑔′) for integration? Taking the
antiderivative of both sides gives ∫

( 𝑓 𝑔)′ =
∫
( 𝑓 ′𝑔) +

∫
( 𝑓 𝑔′).

For the antiderivative of ( 𝑓 𝑔)′, we pick 𝑓 𝑔 (with an arbitrary constant of zero), and we have
integration by parts. Repeating the derivation for the definite integral gives an analogous result.

Theorem 7 (Integration by Parts). If 𝑓 and 𝑔 are differentiable and 𝑓 ′ and 𝑔′ are continuous, then∫
𝑓 𝑔′ = 𝑓 𝑔 −

∫
𝑓 ′𝑔

∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥 = 𝑓 𝑔

���𝑏
𝑎
−

∫ 𝑏

𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥.

Substitution rule

We seek an analogue of the chain rule for integration. Recall the chain rule states that

( 𝑓 ◦ 𝑔)′(𝑥) = ( 𝑓 ′ ◦ 𝑔)(𝑥) · 𝑔′(𝑥).

The right term is fairly complex, but the left term admits a simple application of the Second
Fundamental Theorem of Calculus:∫ 𝑏

𝑎

( 𝑓 ◦ 𝑔)′(𝑥) 𝑑𝑥 = ( 𝑓 ◦ 𝑔)(𝑏) − ( 𝑓 ◦ 𝑔)(𝑎).

We have an opportunity to apply the Second Fundamental Theorem of Calculus once more:

( 𝑓 ◦ 𝑔)(𝑏) − ( 𝑓 ◦ 𝑔)(𝑎) =
∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 ′(𝑢) 𝑑𝑢.
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Therefore, the following holds (the second equality is an application of the chain rule).∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 ′(𝑢) 𝑑𝑢 =

∫ 𝑏

𝑎

( 𝑓 ◦ 𝑔)′(𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎

( 𝑓 ′ ◦ 𝑔)(𝑥) · 𝑔′(𝑥) 𝑑𝑥

This is the substitution rule. We will make a minor cosmetic change, replacing each symbol “ 𝑓 ′"
in the above with the symbol “ 𝑓 ".

Theorem 8 (Substitution Rule). If 𝑓 is continuous, 𝑔 is differentiable, and 𝑔′ is continuous, then∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑢) 𝑑𝑢 =

∫ 𝑏

𝑎

( 𝑓 ◦ 𝑔)(𝑥) · 𝑔′(𝑥) 𝑑𝑥. (3.4)

Taylor’s theorem (optional)

The position 𝑥 of an object traveling at speed 𝑣 starting from an initial position 𝑥0 is given by

𝑥 = 𝑥0 + 𝑣𝑡 + |𝑡|𝑜(1).

By Challenge 10 part (b), if the acceleration of our object is a constant, then we know the |𝑡|𝑜(1)
term exactly, with

𝑥 = 𝑥0 + 𝑣0𝑡 +
1
2 𝑎𝑡

2 (3.5)

where 𝑣0 is the initial velocity of our object. In particular, if our object has acceleration 𝑎 = 0,
then 𝑥 = 𝑥0 + 𝑣𝑡 (notice the velocity must be a constant). What if our object undergoes variable
acceleration over time?

In order to make the dependencies more transparent, we will make the change of notation: 𝑓
instead of 𝑥, 𝑓 ′ instead of 𝑣, and 𝑓 ′′ instead of 𝑎. We will also denote the input by 𝑥 rather than 𝑡.

If the object’s acceleration is variable, so is the object’s velocity. Thus integration is in order and
by the Fundamental Theorem of Calculus,

𝑓 (𝑥) = 𝑓 (𝑥0) +
∫ 𝑥

𝑥0

𝑓 ′(𝑡) 𝑑𝑡.

What next? There is not a whole lot to try, the only thing that is applicable from what we have
done so far is integration by parts.

The relevant product for integration by parts is 𝑡 · 𝑓 ′ so that
∫
𝑓 ′(𝑡) 𝑑𝑡 =

∫
𝑡′ · 𝑓 ′(𝑡) 𝑑𝑡. Applying

integration by parts gives

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑡 · 𝑓 ′(𝑡)
��𝑥
𝑡=𝑥0
−

∫ 𝑥

𝑥0

𝑡′ · 𝑓 ′′(𝑡) 𝑑𝑡 = 𝑓 (𝑥0) +
(
𝑥 𝑓 ′(𝑥) − 𝑥0 𝑓

′(𝑥0)
)
−

∫ 𝑥

𝑥0

𝑡 · 𝑓 ′′(𝑡) 𝑑𝑡.

We are looking for something of the form of Equation 3.5 above. This means that we need to change
the 𝑓 ′(𝑥) in the second term on the right side into 𝑓 ′(𝑥0). This can be done with the Fundamental
Theorem of Calculus: 𝑓 ′(𝑥) = 𝑓 ′(𝑥0) +

∫ 𝑥

𝑥0
𝑓 ′′(𝑡) 𝑑𝑡. Applying this gives

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑥
(
𝑓 ′(𝑥0) +

∫ 𝑥

𝑥0

𝑓 ′′(𝑡) 𝑑𝑡
)
− 𝑥0 𝑓

′′(𝑥0) −
∫ 𝑥

𝑥0

𝑡 · 𝑓 ′′(𝑡) 𝑑𝑡.
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We can tidy up using the integration rule
∫
𝑎 +

∫
𝑏 =

∫
(𝑎 + 𝑏) to get

𝑓 (𝑥) = 𝑓 (𝑥0) + (𝑥 − 𝑥0) 𝑓 ′(𝑥0) +
∫ 𝑥

𝑥0

(𝑥 − 𝑡) 𝑓 ′′(𝑡) 𝑑𝑡.

This is the analogue of Equation 3.5 for variable acceleration 𝑓 ′′.
As long as function 𝑓 has the continuous derivatives, we can continue this procedure. Apply

integration by parts on the integral
∫
(𝑥 − 𝑡) 𝑓 ′′(𝑡) 𝑑𝑡 with the product − (𝑥−𝑡)

2

2 𝑓 ′′ to get

𝑓 (𝑥) = 𝑓 (𝑥0) + (𝑥 − 𝑥0) 𝑓 ′(𝑥0) +
(𝑥 − 𝑥0)2

2 𝑓 ′′(𝑥0) +
∫ 𝑥

𝑥0

(𝑥 − 𝑡)2
2 𝑓 ′′′(𝑡) 𝑑𝑡.

Once more! Integration by parts on the integral
∫ (𝑥−𝑡)2

2 𝑓 ′′′(𝑡) 𝑑𝑡 with the product − (𝑥−𝑡)
3

3! 𝑓 ′′′ gives

𝑓 (𝑥) = 𝑓 (𝑥0) + (𝑥 − 𝑥0) 𝑓 ′(𝑥0) +
(𝑥 − 𝑥0)2

2 𝑓 ′′(𝑥0) +
(𝑥 − 𝑡)3

3! 𝑓 ′′′(𝑥0) +
∫ 𝑥

𝑥0

(𝑥 − 𝑡)3
3! 𝑓 (4)(𝑡) 𝑑𝑡.

Our calculations suggest the following result.

Theorem 9 (Taylor’s Theorem). If function 𝑓 is (𝑘 + 1)-times differentiable, then

𝑓 (𝑥) =
𝑘∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +

∫ 𝑥

𝑥0

𝑓 (𝑘+1)(𝑡)
𝑘! (𝑥 − 𝑥0)𝑘 𝑑𝑡. (3.6)

The polynomial
∑𝑘
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 is called the 𝑘-th order Taylor polynomial of 𝑓 at 𝑥0.

Proof. We use the well-ordering principle. Suppose 𝑘+1 is the smallest integer for which the result
does not hold. By assumption, Equation 3.6 holds. As before, we integrate by parts. The product
is − (𝑥−𝑥0)𝑘+1

(𝑘+1)! 𝑓 (𝑘+1). The result of the integration by parts is∫ 𝑥

𝑥0

𝑓 (𝑘+1)(𝑡)
(𝑘 + 1)! (𝑥 − 𝑥0)𝑘 𝑑𝑡 =

(𝑥 − 𝑥0)𝑘+1

(𝑘 + 1)! 𝑓 (𝑘+1)(𝑥0) +
∫ 𝑥

𝑥0

(𝑥 − 𝑥0)𝑘+1

(𝑘 + 1)! 𝑓 (𝑘+2)(𝑡) 𝑑𝑡. (3.7)

Therefore,

𝑓 (𝑥) =
𝑘+1∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +

∫ 𝑥

𝑥0

𝑓 (𝑘+2)(𝑡)
(𝑘 + 1)! (𝑥 − 𝑥0)𝑘+1 𝑑𝑡.

But this is simply Equation 3.6 with 𝑘 replaced by (𝑘+1). Therefore, Equation 3.6 always holds.

3.3 Area Under a Curve

Consider the three diagrams in Figure 3.8. Each curve may be interpreted as telling us the
velocity of an object from the time 𝑡𝑖 to time 𝑡 𝑓 . The first is the simplest, our object is moving at a
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time

velocity
𝑐

𝑡𝑖𝑡 𝑓
time

velocity
𝑐

𝑡𝑖𝑡 𝑓
time

velocity

𝑡𝑖𝑡 𝑓

Figure 3.8: Velocities of objects from time 𝑡𝑖 to 𝑡 𝑓 . The displacement is the area under the curve.

constant velocity. Using a definite integral and the Fundamental Theorem of Calculus, we know
that our object is subject to the displacements 𝑑1, whose value is

𝑑1 =

∫ 𝑡 𝑓

𝑡𝑖

𝑐 𝑑𝑡 = 𝑐𝑡

���𝑡 𝑓
𝑡𝑖
= 𝑐(𝑡 𝑓 − 𝑡𝑖).

The displacement takes a simple form, as it should: it says that the displacement 𝑑1 is the velocity
times the duration of travel. But we can interpret this as the area of a square whose height is 𝑐
and base length is 𝑡 𝑓 − 𝑡𝑖 . Such a square is literally drawn in our diagram: it is the shape that is
enclosed inside the curve, the 𝑥-axis, and the equations 𝑡 = 𝑡𝑖 and 𝑡 = 𝑡 𝑓 .

We thus have another interpretation of integration: as an area under a curve. Our method
of calculating the displacement of an object by accumulating its velocity is the same as that for
calculating area under a curve!

Let us try this out for the function graphed in the second diagram in Figure 3.8. The area under
the curve is a right triangle: a triangle where one of the angle measures 90°. A triangle with height
ℎ and base length 𝑙 occupies precisely half the area of a square with height ℎ and base length 𝑙.
Therefore, a triangle with height ℎ and base length 𝑙 has area ℎ𝑙/2. Applying this to our curve,
we see that the displacement 𝑑2 of our object is: 𝑐(𝑡 𝑓 − 𝑡𝑖)/2. Let us repeat this calculation with
integration. The formula for a line is given by 𝑡 ↦→ 𝑤𝑡 + 𝑏 where the constant 𝑤 is called the slope,
or weight, of the line and the constant 𝑏 is called the bias. The slope measures the rate of change
of the line. In this case, the rate of change is 𝑐−0

𝑡 𝑓 −𝑡𝑖 since it steadily increased from 0 to 𝑐 over the
time 𝑡𝑖 to 𝑡 𝑓 . To find the bias, pick any point on the line. Any point suffices, but the point (𝑡𝑖 , 0) is
a particularly simple one. We then apply the 𝑥-coordinate of the point to our formula and correct
for the difference with the 𝑦-coordinate. The formula is 𝑐

𝑡 𝑓 −𝑡𝑖 𝑡 + 𝑏, so plugging in the input 𝑡𝑖 into
the variable 𝑡 gives 𝑐𝑡𝑖

𝑡 𝑓 −𝑡𝑖 + 𝑏 which must equal the y-coordinate: 0. Therefore, the bias 𝑏 is given by
𝑏 := − 𝑐𝑡𝑖

𝑡 𝑓 −𝑡𝑖 and our formula for the line is

𝑐

𝑡 𝑓 − 𝑡𝑖
𝑡 − 𝑐𝑡𝑖

𝑡 𝑓 − 𝑡𝑖
.

The definite integral for the function above from 𝑡𝑖 to 𝑡 𝑓 is

𝑑2 =

∫ 𝑡 𝑓

𝑡𝑖

(
𝑐

𝑡 𝑓 − 𝑡𝑖
𝑡 − 𝑐𝑡𝑖

𝑡 𝑓 − 𝑡𝑖

)
𝑑𝑡 =

𝑐

𝑡 𝑓 − 𝑡𝑖

∫ 𝑡 𝑓

𝑡𝑖

𝑡 𝑑𝑡 − 𝑐𝑡𝑖

𝑡 𝑓 − 𝑡𝑖

∫ 𝑡 𝑓

𝑡𝑖

1 𝑑𝑡

=
𝑐𝑡2

2(𝑡 𝑓 − 𝑡𝑖)

����𝑡 𝑓
𝑡𝑖

− 𝑐𝑡𝑖𝑡

𝑡 𝑓 − 𝑡𝑖

����𝑡 𝑓
𝑡𝑖

=

𝑐(𝑡2
𝑓
− 𝑡2

𝑖
)

2(𝑡 𝑓 − 𝑡𝑖)
−
𝑐𝑡𝑖(𝑡 𝑓 − 𝑡𝑖)
(𝑡 𝑓 − 𝑡𝑖)

=

𝑐(𝑡2
𝑓
− 2𝑡 𝑓 𝑡𝑖 + 𝑡2𝑖 )
2(𝑡 𝑓 − 𝑡𝑖)

=
𝑐(𝑡 𝑓 − 𝑡𝑖)2
2(𝑡 𝑓 − 𝑡𝑖)

.
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Since 𝑡 𝑓 − 𝑡𝑖 is nonzero, we may cancel out the common factors in the fraction to get 𝑑2 = 𝑐(𝑡 𝑓 − 𝑡𝑖)/2.
A whole lot more work to get the obvious answer!

𝑎

𝑏
𝑐

𝜃

𝜙

𝐴

𝑎

𝑏
𝑐

𝜃
𝜃

𝜙

𝐵 𝜙

𝐶

Figure 3.9: A single line is sufficient to prove the Pythagorean theorem.

The horrendous calculation for the area of a triangle shows us the advantage of having multiple
perspectives. A difficult problem in one perspective might turn out to be far simpler in another.
So how about we try out another perspective on triangles?

Have a look at the right triangle depicted on the left diagram of Figure 3.9. In either of our
calculations, we never had to use the length 𝑐 of the hypotenuse (the longest side of a right triangle).
How about we try to calculate the area of a right triangle without using the lengths 𝑎 and 𝑏? The
other pieces of information we have available are the length of the hypotenuse 𝑐 and two angles 𝜃
and 𝜙 (labeled in the left diagram of Figure 3.9). Since the angles of a triangle add up to 180°, we
have 𝜃 + 𝜙 = 90°.

An angle is the ratio of two lengths and is therefore dimensionless (see footnote: angle 𝜓 is the
length of the red arc divided by the circumference of the blue circle; this ratio is independent of
the radius involved).7 The only dimensionful quantity (quantity with a dimension) is the length
𝑐. By dimensional analysis, the area of the triangle 𝐴 will then be given by

𝐴 = 𝑓 (𝜃, 𝜙)𝑐2

where 𝑓 is some dimensionless function of our angles 𝜃 and 𝜙. Draw a line from the right angle
to the hypotenuse such that two new right angles are formed (diagram on the right in Figure 3.9).
There are now three right triangles in one diagram. Denote the area of the larger of the new triangle
by 𝐵 and the area of the smaller of the new triangle by 𝐶. All three right triangles have the angles
𝜃 and 𝜙. The area 𝐵 is given by 𝑓 (𝜃, 𝜙)𝑎2 and the area 𝐶 is given by 𝑓 (𝜃, 𝜙)𝑏2. Since 𝐵+𝐶 = 𝐴, we
have 𝑓 (𝜃, 𝜙)𝑎2 + 𝑓 (𝜃, 𝜙)𝑏2 = 𝑓 (𝜃, 𝜙)𝑐2. Since 𝑓 (𝜃, 𝜙) must be nonzero, we can divide both sides
by 𝑓 (𝜃, 𝜙) to obtain the Pythagorean theorem:

𝑎2 + 𝑏2 = 𝑐2.

Circles and ellipses
The function 𝑓 (𝜃, 𝜙) and our attempt to calculate a triangle’s area with it is an example of a

MacGuffin. True to a MacGuffin’s purpose we immediately return to the plot: we want to use

7

𝜓
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integrals to calculate areas under curves. The curves corresponding to constant velocity (square)
and constant acceleration (triangle) were simple. How about an arc as shown in the third diagram
of Figure 3.8? The arc corresponds to the top half of an ellipse. Before discussing ellipses, it would
be better to talk about circles, which are simpler. Notice that an ellipse former needs two real
numbers (width and height) to describe, while a circle is described by a single number (radius).

𝑥-axis

𝑦-axis

𝑟

𝑟−𝑟

−𝑟

(𝛼, 𝛽)
𝑟

𝑥-axis

𝑦-axis

𝑟

𝑟−𝑟

Figure 3.10: A circle of radius 𝑟 at the origin is given by the equation 𝑥2 + 𝑦2 = 𝑟2 (left). The top
semicircle is given by the equation 𝑦 =

√
𝑟2 − 𝑥2 (right).

To apply integration, we need a function that describes a curve. What is the equation of a circle
of radius 𝑟 centered at the origin? Take any point in a circle that is not on an axis, and label the
𝑥-coordinate by 𝛼 and the 𝑦-coordinate by 𝛽 (see the diagram on the left in Figure 3.10). We may
create a right triangle whose base is on the 𝑥-axis. By the Pythagorean theorem, 𝛼2 + 𝛽2 = 𝑟2.
Thus points on the circle that are not located in the axis are described by the equation 𝑥2 + 𝑦2 = 𝑟2.
But the points located in the axis also satisfy the equation 𝑥2 + 𝑦2 = 𝑟2 because one of the term in
the left side is 𝑟2 and the other is zero. Therefore, the equation of a circle of radius 𝑟 centered at
the origin is given by 𝑥2 + 𝑦2 = 𝑟2. To find the equation of the top half of a circle, called the top
semicircle, which we may interpret as describing the velocity of an object from time −𝑟 to time 𝑟,
we subtract 𝑥2 from both sides of the equation and use the fact that 𝑦 > 0 on the top half to take
the square root. This gives the equation 𝑦 =

√
𝑟2 − 𝑥2.

Suppose we knew nothing about area formulas for circles and ellipses. By dimensional con-
siderations, we guess that the area of a circle of radius 𝑟 should be 𝑐𝑟2 for some dimensionless
constant 𝑐. What is the constant 𝑐? Normally we would plug in the value 𝑟 = 1 to find the value of
𝑐, but we are starting from scratch so there is no other information to help us. We have no choice
but to define the constant. A unit circle is a circle of radius 1. The constant 𝜋 is defined to be the
value of the area of a unit circle.

A unit circle may be depicted on a plane. If we position the 𝑥-axis and the 𝑦-axis to be the origin
at the center of the unit circle as shown in the left of Figure 3.11, the graph of the unit circle is given
by the equation: 𝑥2 + 𝑦2 = 1. In particular, the equation for the top semicircle, shown on the right
of Figure 3.11 is given by 𝑦 =

√
1 − 𝑥2. To see this, subtract 𝑥2 from both sides of the equation to

get 𝑦2 = 1 − 𝑥2 then take square roots on both sides (which is ok to do since 𝑦 > 0 on this side of
the circle).

If we think of the equation 𝑦 =
√

1 − 𝑥2 as describing the velocity 𝑦 of a car at time 𝑥 from time
−1 to time 1, Then the integral of the function

√
1 − 𝑥2 from −1 to 1 is the accumulated velocity
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𝑥-axis

𝑦-axis

1

1−1

−1

𝑥-axis

𝑦-axis

1

1−1

Figure 3.11: The graphs of equation 𝑥2 + 𝑦2 = 1 (left) and equation 𝑦 =
√

1 − 𝑥2 (right).

during this time. Geometrically, this corresponds to the area enclosed between the semicircle and
the 𝑥-axis. Since the area of a circle is twice that of the area of a semicircle of the same radius,

𝜋 := 2
∫ 1

−1

√
1 − 𝑥2 𝑑𝑥.

Now that we have defined 𝜋 such that it is (the value of) the area of the unit circle, let us use this
information to check our guess that the area of a circle with radius 𝑟 is 𝜋𝑟2. Since we already know
the area of a unit circle (defined to be 𝜋), the most straightforward path will be to reduce the circle
of radius 𝑟 into a unit circle. The function 𝑓 describing the top semicircle of radius 𝑟 is given by√
𝑟2 − 𝑥2. We want the accumulated “velocity" from time −𝑟 to 𝑟. The integral we wish to calculate

is thus
∫ 𝑟

−𝑟
√
𝑟2 − 𝑥2 𝑑𝑥, where radius 𝑟 is a positive constant. The function 𝑓 : 𝑥 ↦→

√
𝑟2 − 𝑥2 can

be made to resemble the function describing the top semicircle of a unit circle by pulling out the 𝑟
term: √

𝑟2 − 𝑥2 =
√
𝑟2(1 − 𝑥2/𝑟2) = 𝑟

√
1 − (𝑥/𝑟)2.

To fully reduce the term
√

1 − (𝑥/𝑟)2 into
√

1 − 𝑥2, we will make the substitution 𝑔 : 𝑥 ↦→ 𝑥/𝑟. This
calls for the substitution rule with 𝑢 := 𝑔(𝑥)∫ 𝑏

𝑎

( 𝑓 ◦ 𝑔)(𝑥) · 𝑔′(𝑥) 𝑑𝑥 =

∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑢) 𝑑𝑢.

Now 𝑔′(𝑥) = 1/𝑟, which is a problem because we have a factor of 𝑟 instead in 𝑟
√

1 − (𝑥/𝑟)2. We
remedy this by multiplying and dividing by 𝑟:

𝑓 (𝑥) =
√
𝑟2 − 𝑥2 = 𝑟

√
1 − (𝑥/𝑟)2 = 𝑟2(1/𝑟)

√
1 − (𝑥/𝑟)2.

All the preparation is done and we just have to apply the substitution rule. The area 𝐴(𝑟) of a circle
of radius 𝑟 is given by

𝐴(𝑟) = 2
∫ 𝑟

−𝑟

√
𝑟2 − 𝑥2 𝑑𝑥 = 2𝑟2

∫ 𝑟

−𝑟

√
1 − (𝑥/𝑟)2 · 1

𝑟
𝑑𝑥 (3.12)

=

(
2
∫ 𝑔(𝑟)

𝑔(−𝑟)

√
1 − 𝑔(𝑥)2 · 𝑔′(𝑥) 𝑑𝑥

)
𝑟2 =

(
2
∫ 1

−1

√
1 − 𝑢2 𝑑𝑢

)
𝑟2 = 𝜋𝑟2. (3.13)
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The integral 2
∫ 1
−1

√
1 − 𝑢2 𝑑𝑢 is defined to be 𝜋, and so 𝐴(𝑟) = 𝜋𝑟2, just as we guessed.

𝑥-axis

𝑦-axis

𝑎

−𝑎
𝑏−𝑏 𝑥-axis

𝑦-axis

𝑎

𝑏−𝑏

Figure 3.14: The graphs of equation 𝑥2

𝑏2 +
𝑦2

𝑎2 = 1 (left) and equation 𝑦 =
√
𝑎2 − (𝑎𝑥/𝑏)2 (right).

We now turn to the ellipse. What is an equation that describes an ellipse of height 2𝑎 and width
2𝑏 centered at the origin? Since the answer is not obvious at all, let us try to reduce this problem
into a simpler one. If we measure the 𝑥 axis in units of 𝑏 so that 𝑏 = 1, then our ellipse will have
width of 2. Similarly, if we measure the 𝑦 axis in units of 𝑎 so that 𝑎 = 1, then our ellipse will
have a height of 2. In other words, with our new choice of units, our ellipse becomes a unit circle!
The unit circle’s equation is given by 𝑥2 + 𝑦2 = 1. We see that with the substitution 𝑥 ↦→ 𝑥/𝑏 (this
makes 𝑏 = 1) and 𝑦 ↦→ 𝑦/𝑎 (this makes 𝑎 = 1) we obtain the equation of a unit circle. Therefore, the
equation of an ellipse is 𝑥2

𝑏2 +
𝑦2

𝑎2 = 1. To get the top half of an ellipse, which allows us to interpret the
area under a curve as a displacement (and thus an integral), we subtract both sides of the equation
of an ellipse by 𝑥2

𝑏2 and then multiply both sides by 𝑎2 to isolate the 𝑦2 term. Since 𝑦 > 0 on the top
half of an ellipse, we can take a square root of both sides to get the equation 𝑦 =

√
𝑎2 − (𝑎𝑥/𝑏)2.

Let us use the interpretation of area under the curve as an integral to find a formula for the area
of an ellipse. We will reduce our problem into one we have already solved: the formula for the area
of a circle. The equation for the top half of an ellipse 𝑦 =

√
𝑎2 − (𝑎𝑥/𝑏)2 can be transformed into the

equation for the top semicircle of radius 𝑎 given by
√
𝑎2 − 𝑥2 using the substitution 𝑔 : 𝑥 ↦→ 𝑎𝑥/𝑏.

Since 𝑔′(𝑥) = 𝑎/𝑏, the substitution rule with 𝑢 := 𝑔(𝑥) gives the area 𝐴(𝑎, 𝑏) of an ellipse as

𝐴(𝑎, 𝑏) = 2
∫ 𝑏

−𝑏

√
𝑎2 − (𝑎𝑥/𝑏)2 𝑑𝑥 = 2

∫ 𝑏

−𝑏

𝑏

𝑎
· 𝑎
𝑏

√
𝑎2 − (𝑎𝑥/𝑏)2 𝑑𝑥 =

2𝑏
𝑎

∫ 𝑏

−𝑏

√
𝑎2 − (𝑎𝑥/𝑏)2 · 𝑎

𝑏
𝑑𝑥

=
𝑏

𝑎

(
2
∫ 𝑔(𝑏)

𝑔(−𝑏)

√
𝑎2 − 𝑔(𝑥)2 · 𝑔′(𝑥) 𝑑𝑥

)
=
𝑏

𝑎

(
2
∫ 𝑎

−𝑎

√
𝑎2 − 𝑢2 𝑑𝑢

)
=
𝑏

𝑎

(
𝜋𝑎2) = 𝜋𝑎𝑏

where we have used the fact that 2
∫ 𝑎

−𝑎
√
𝑎2 − 𝑢2 𝑑𝑢 is the area of a circle of radius 𝑎 (Equation 3.12).

The answer 𝐴(𝑎, 𝑏) = 𝜋𝑎𝑏 confirms our guess from dimensional analysis at the beginning of
Chapter 2.

Observe that in both of our calculations for the area of a circle and an ellipse, the only substitution
we needed was a rescaling of the variable 𝑥. In the former case it was 𝑔 : 𝑥 ↦→ 𝑥/𝑟, while in the
latter case it was 𝑔 : 𝑥 ↦→ 𝑎𝑥/𝑏. Since 𝑟, 𝑎, and 𝑏 are all positive constants, these substitutions are
simply a change of units. For example, in the former case our substitution simply rescales our 𝑥
axis such that the number 𝑟 becomes our unit of measurement. It has the effect of setting 𝑟 = 1 (if
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a meter is our unit of measurement, then the length of a meter becomes 1) and turning our circle
into a unit circle. The case of the ellipse is similar where we are setting our unit of measurement
such that 𝑎

𝑏 = 1, in other words: 𝑎 = 𝑏, which turns our ellipse into a circle!
This demonstrates the special case of the substitution rule: if we measure the 𝑥-axis in units of

a nonzero constant 𝑐 so that 𝑐 = 1, then
∫ 𝑐

−𝑐 𝑓 (𝑥) 𝑑𝑥 = 𝑐
∫ 1
−1 𝑓 (𝑥) 𝑑𝑥.

Solids of revolution

We were able to calculate areas by interpreting area under a curve as the displacement of an
object, moving with velocity described by the curve. Can we measure volume in a similar way?

𝑦-axis

𝑥-axis

Figure 3.15: Rotating the area underneath the constant function defined on a finite interval sweeps
out a cylinder.

Suppose we have a function 𝑓 defined on an interval [𝑎, 𝑏]with 𝑓 ≥ 0 on each point it is defined
on (we will call such functions positive functions).8 If we rotate the area enclosed by the function
𝑓 , the 𝑥-axis, and the lines 𝑥 = 𝑎 and 𝑥 = 𝑏, then we sweep out a geometrical solid. From Figure 3.15
we see that rotating an area of a square sweeps out a cylinder. Rotating an angled line (with positive
function values only) sweeps out a cone, rotating a semicircle sweeps out a sphere. Much like we
can accumulate velocity to obtain displacement, we should be able to accumulate area to obtain
volume. This will enable us to use the machinery of integrals to calculate the formulas of volumes
for a large class of geometrical objects. Let us guess the formula of the volume of a solid obtained
by sweeping a positive function defined in a finite interval [𝑎, 𝑏].

Recall that a derivative of 𝑔 has dimension of 𝑔 divided by the dimension of its input. Since
integration is an inverse operation of differentiation, due to the Fundamental Theorem of Calculus
(
∫ 𝑥

𝑡𝑖
𝑔(𝑡) 𝑑𝑡)′ = 𝑔(𝑥), an integral of 𝑔 has dimension of 𝑔 multiplied by the dimension of its input.

For example, for velocity 𝑔 with input time 𝑡, the integral of 𝑔 (displacement) has dimension
velocity (Length/Time) multiplied by Time, which is Length.

Under the interpretation of an integral as an area, a function 𝑓 and its input 𝑥 both have the
dimension of Length, allowing

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 to represent an area with dimension Length2. We see

that the expression
∫ 𝑏

𝑎
[ 𝑓 (𝑥)]2 𝑑𝑥 is the simplest one that has the desired dimension Length3 of a

volume. The only thing missing is our ignorance about dimensionless constants. We therefore
guess that the volume 𝑉 is given by

∫ 𝑏

𝑎
𝑐[ 𝑓 (𝑥)]2 𝑑𝑥 for some dimensionless constant 𝑐.9

8Thus a zero function is also a “positive" function. It rolls off the tongue better than “nonnegative functions".
9Technically speaking the expression 𝑐

(∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

)
𝑓 also has the dimension of a volume, but it cannot be a volume

because it is not a number but a function.
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To find the constant 𝑐, we consider the simple case of a cylinder. The cylinder’s volume can
be found by taking the product of the base circle of radius 𝑟 (whose area is 𝜋𝑟2) and its height ℎ.
Therefore, a cylinder of height ℎ and radius 𝑟 has volume 𝜋𝑟2ℎ. Let us set up our integral. The
constant function 𝑓 : 𝑥 ↦→ 𝑟 defined on the interval [0, ℎ] will give us a rectangle with the desired
shape. Our guess will thus give

𝜋𝑟2ℎ =

∫ ℎ

0
𝑐[ 𝑓 (𝑥)]2 𝑑𝑥 =

∫ ℎ

0
𝑐 · 𝑟2 𝑑𝑥 = 𝑐𝑟2

∫ ℎ

0
1 𝑑𝑥 = 𝑐𝑟2𝑥

���𝑥=ℎ
𝑥=0

= 𝑐𝑟2ℎ

and we see that the dimensionless constant is 𝜋.
The volume of a solid of revolution obtained by rotating a positive function 𝑓 defined on an

interval [𝑎, 𝑏] around the 𝑥-axis is given by∫ 𝑏

𝑎

𝜋
[
𝑓 (𝑥)

]2
𝑑𝑥.

Challenge 11
(a) Let 𝑟 and ℎ be positive real numbers and let 𝑓 : 𝑥 ↦→ 𝑟𝑥/ℎ be defined on the interval [0, ℎ].

Use the method of solid of revolution on the function 𝑓 to verify that the volume of a cone of
height ℎ and circular base of radius 𝑟 is given by the formula 𝜋𝑟2ℎ

3 .
(b) Apply the solid of revolution to the equation for a semi circle of radius 𝑟 to verify that a

sphere of radius 𝑟 has volume 4
3𝜋𝑟

3.

3.4 Exponentiation Revisited

The logarithm function
Question: What is an antiderivative of the function 1/𝑥? Answer: Easy! Assign the dimension

of Length to variable 𝑥 so that 1/𝑥 has dimension Length−1. Its antiderivative must then have
dimension Length × Length−1, in other words, it must be dimensionless. So we guess that the
antiderivative of 1/𝑥 is an arbitrary constant 𝑐.

This is completely wrong! By the constant rule, we know that 𝑐′ = 0, which is definitely not
1/𝑥. Now, we could ignore this problem and pretend that everything is ok. However, 1/𝑥 is such
a simple yet important function that describes division by a variable. We will have to resolve this.

As we saw, if 1/𝑥 has an antiderivative, it must be dimensionless, so we have no clue to help us
our. Just as we calculated areas of circles by defining the (value of the) area of a unit circle to be 𝜋,
our solution will be to define a function that differentiates to 1/𝑥.

Definition 10. For each 𝑥 ∈ (0,∞), the (natural) logarithm function is defined as

log : 𝑥 ↦→
∫ 𝑥

1

1
𝑢
𝑑𝑢.

If 𝑢 is a positive constant, then 1
𝑢+𝛼 − 1

𝑢 = − 𝛼
𝑢2+𝑢𝛼 . Drop 𝛼 → 0 and we have 1

𝑢+𝛼 − 1
𝑢 → 0.

Therefore, 1/𝑢 is continuous and the Fundamental Theorem of Calculus gives log′(𝑥) = 1/𝑥 for
each 𝑥 ∈ (0,∞).
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By construction, the logarithm function is strictly increasing: if 0 < 𝑎 < 𝑏 then log(𝑎) < log(𝑏).
Property (P3) of integrals gives log 1 =

∫ 1
1 1/𝑢 𝑑𝑢 = 0. The derivative of the logarithm function

never vanishes (that is, the derivative is never zero), and since differentiability implies continuity,
we conclude that the logarithm function is continuous.

The following properties of the logarithm function are the guarantors of the function’s utility.

Proposition 11. Let 𝑥 and 𝑦 be positive real numbers; then
(a) log

(
𝑥𝑦

)
= log 𝑥 + log 𝑦,

(b) log 𝑥
𝑦 = log 𝑥 − log 𝑦,

(c) if 𝑝 is a real number, then log 𝑥𝑝 = 𝑝 log 𝑥.

Proof. (a) We have two variables 𝑥 and 𝑦. To make things more manageable, we first fix 𝑦 and
consider a function of 𝑥 only. We will ignore log 𝑦 and move log 𝑥 to the left side by defining
the following function: for positive 𝑦, let 𝑔 : 𝑥 ↦→ log

(
𝑥𝑦

)
−log 𝑥. We apply the differentiation

rules, treating 𝑦 as a constant to get

𝑔′(𝑥) = 1
𝑥𝑦

d
d𝑥 (𝑥𝑦) −

1
𝑥
=

1
𝑥𝑦
· 𝑦 − 1

𝑥
= 0.

The symbol d
d𝑥 means, take the derivative with respect to 𝑥. This was necessary because

the expression (𝑥𝑦)′ in a vacuum might be ambiguous, whereas d
d𝑥 (𝑥𝑦) and d

d𝑦 (𝑥𝑦) are both
unambiguous.10

Our calculation shows that 𝑔 is a function of 𝑥, whose rate of change with respect to 𝑥 is zero.
Thus 𝑔 is actually a constant. To calculate 𝑔, observe that 𝑔(1) = log 𝑦−log 1 = log 𝑦−0 = log 𝑦.
This gives log

(
𝑥𝑦

)
− log 𝑥 = 𝑔(𝑦) = log 𝑦, as desired.

(b) We multiply by 1 and use property (a) to get

log 𝑥 = log
(
𝑥

𝑦
· 𝑦

)
= log 𝑥

𝑦
+ log 𝑦.

Rearranging, we have log 𝑥 − log 𝑦 = log 𝑥
𝑦 .

(c) We will return to this later.

We note one further property of the real numbers. We formalize the idea that a ruler, no matter
how small, may be used to measure any length in finitely many steps, no matter how long. The
proof will be reminiscent of our previous encounters with the well-ordering principle.

Theorem 12 (Archimedean property of ℝ). If 𝑥 is a positive real number and 𝑦 is a real number,
then there is some natural number 𝑛 such that 𝑛𝑥 > 𝑦.

10Contrast this with the unambiguous expression (𝑐𝑥𝑘 )′. Our convention is that 𝑐 is a constant.
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Proof. To obtain a contradiction, suppose there is no natural number 𝑛 such that 𝑛𝑥 > 𝑦. Let 𝑆 be
the set of numbers 𝑛𝑥 for each natural number 𝑛. Since the set 𝑆 is a nonempty set of real numbers
containing 0, bounded from above by 𝑦, there is a least upper bound 𝑢 := sup 𝑆. Since 𝑥 is positive
we know that 𝑢 − 𝑥 < 𝑢, and so 𝑢 − 𝑥 is not an upper bound of 𝑆. Since 𝑢 − 𝑥 is not an upper bound
of 𝑆, there must be a natural number𝑚 satisfying𝑚𝑥 > 𝑢− 𝑥. Then (𝑚+1)𝑥 > 𝑢− 𝑥+ 𝑥 = 𝑢, where
𝑚 + 1 is a natural number. This contradicts our assumption that 𝑢 is an upper bound of 𝑆.

The exponential function

Recall that the logarithm function is strictly increasing with log 1 = 0. Thus for any 𝛼 > 1,
we have log 𝛼 > 0. By Proposition 11 part (a), log(𝛼𝑛) = 𝑛 log 𝛼 for each natural number 𝑛. We
conclude using the Archimedean property that the logarithm function is not bounded from above.
Similarly, if 𝛼 ∈ (0, 1), then log 𝛼 < 0 and Proposition 11 part (a) tells us that the logarithm function
is not bounded from below. Therefore, each positive real input 𝑥 to the logarithm function is
unambiguously associated with a unique real number log 𝑥. We flip this relation and associate to
each real number log 𝑥, a unique positive real number 𝑥.

𝑥

𝑦 𝑒𝑥

log 𝑥

𝑦 = 𝑥

1

1

To formalize this, we define an inverse function of the logarithm function on ℝ.

Definition 13. The exponential function exp is defined on ℝ such that exp ◦ log and log ◦ exp
are the identity maps 𝑥 ↦→ 𝑥.11 More commonly, we write the exponential function as 𝑒𝑥 , where
𝑒 log 𝑥 = 𝑥 for 𝑥 ∈ (0,∞) and log(𝑒𝑥) = 𝑥 for 𝑥 ∈ ℝ. The constant 𝑒 (called Euler’s number) is defined
to be exp(1).

Since log ◦ exp is the constant map 𝑥 ↦→ 𝑥, we have (log ◦ exp)′ = 1. Assuming exp is differen-
tiable (to be justified in Chapter 4), applying the chain rule gives (log ◦ exp)′ = 1

exp · exp′. Hence
exp′/exp = 1, and so exp′ = exp. We restate this important property.

11Observe that exp ◦ log and log ◦ exp are different maps, because although exp is defined on ℝ, the logarithm function
log is only defined on the positive real numbers.
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Proposition 14. The derivative of the exponential function is itself. That is (𝑒𝑥)′ = 𝑒𝑥 .

The following property is the exponential function’s analogue of Proposition 11 part (a).

Theorem 15. If 𝑥 and 𝑦 are real numbers, then 𝑒𝑥 · 𝑒𝑦 = 𝑒𝑥+𝑦 .

Challenge 12
(a) Show that an input to the exponential function must be dimensionless. As the logarithm

function is an inverse function of the exponential function, it follows that outputs of the
logarithm function are dimensionless (flip the graph). Verify this using d log 𝑥

d𝑥 = 𝑥−1.
(b) Use the definition of the logarithm function to show that an input to the logarithm function

must be dimensionless. Later, we will see functions cos and sin satisfying d2 cos 𝑥
d𝑥2 = − cos 𝑥

and d2 sin 𝑥
d𝑥2 = − sin 𝑥, respectively.12 Show that inputs to the cos and sin functions must be

dimensionless.
(c) Show that 𝑒𝑥 · 𝑒𝑦 = 𝑒𝑥+𝑦 and deduce that 𝑒0 = 1. [Hint: start with log(𝑒𝑥𝑒𝑦)]

Hyperbolic functions

Definition 16. A function 𝑓 is even (an even function) if 𝑓 (𝑥) = 𝑓 (−𝑥) for each input 𝑥. A function
𝑔 an odd (an odd function) if 𝑔(𝑥) = −𝑔(−𝑥) for each input 𝑥.

For example, the absolute value function is even, while the identity function 𝑥 ↦→ 𝑥 is odd.
Challenge 13

(a) Suppose we have a function 𝑓 . Let 𝑓𝑒 : 𝑥 ↦→ 𝑓 (𝑥)+ 𝑓 (−𝑥)
2 and 𝑓𝑜 : 𝑥 ↦→ 𝑓 (𝑥)− 𝑓 (−𝑥)

2 . Show that 𝑓𝑒
is even and 𝑓𝑜 is odd. Conclude that a function can be written as the sum of an even and an
odd function.

(b) Let function 𝑓 be written as the sum 𝑓 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥), where 𝑓1 is even and 𝑓2 is odd. By
part (a), such a decomposition is always possible. We show that a function’s decomposition
into odd and even functions is unique. Find an expression for 𝑓 (−𝑥), then solve for 𝑓1 and 𝑓2.
Use the decomposition to show that 𝑓1 = 𝑓𝑒 and 𝑓2 = 𝑓𝑜 , as defined in part (a).

Definition 17 (Hyperbolic functions). Let 𝑥 be a real number. Define the functions sinh 𝑥 (read
sinch), cosh 𝑥 (read cosh), and tanh 𝑥 (read tanch) by the following.13

sinh 𝑥 := 𝑒𝑥 − 𝑒−𝑥
2 cosh 𝑥 := 𝑒𝑥 + 𝑒−𝑥

2 tanh 𝑥 := sinh 𝑥
cosh 𝑥 =

𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

Challenge 14 Use the definitions to show the following.14
(a) cosh2 𝑥 − sinh2 𝑥 = 1,
(b) sinh

(
𝑥 + 𝑦

)
= sinh 𝑥 cosh 𝑦 + cosh 𝑥 sinh 𝑦,

(c) sinh 𝑥 = tanh 𝑥√
1−tanh2 𝑥

,

12The notation d2 𝑓
d𝑥2 means the second derivative of 𝑓 .

13Notice that cosh 𝑥 is the even function of exp(𝑥), while sinh 𝑥 is the odd function of exp(𝑥).
14Here □2𝑥 means (□𝑥)2. Hence cosh2 𝑥 := (cosh 𝑥)2, sinh2 𝑥 := (sinh 𝑥)2, and tanh2 𝑥 := (tanh 𝑥)2.
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(d) cosh 𝑥 = 1√
1−tanh2 𝑥

,

(e) sinh′ 𝑥 = cosh 𝑥, cosh′ 𝑥 = sinh 𝑥, and tanh′ 𝑥 = 1/(cosh2 𝑥).

Exponentiation

We now come full circle and obtain the exponentiation rules we encountered in Chapter 1, but
in far greater generality.

Definition 18. Let 𝑎 be a positive real number. For each real number 𝑥, the expression 𝑎𝑥 is defined
by 𝑎𝑥 := 𝑒𝑥 log 𝑎 .

Proposition 19. Let 𝑎 and 𝑏 be positive real numbers. Let 𝑥 and 𝑦 be real numbers. Then
(a) 𝑎0 = 1,
(b) 𝑎−𝑥 = 1

𝑎𝑥 ,
(c) 𝑎𝑥 · 𝑎𝑦 = 𝑎𝑥+𝑦 ,
(d) (𝑎 · 𝑏)𝑥 = 𝑎𝑥 · 𝑏𝑥 ,
(e) (𝑎𝑥)𝑦 = 𝑎𝑥𝑦 .

Proof. These all follow from the properties of the exponential function and the logarithm function.
The only property that is tricky is the final one. By definition, (𝑎𝑥)𝑦 = 𝑒𝑦 log 𝑎𝑥 . Once again, by
definition, 𝑎𝑥 = 𝑒𝑥 log 𝑎 . Using the fact that log ◦ exp is an identity map, we have

(𝑎𝑥)𝑦 = 𝑒𝑦 log 𝑎𝑥 = 𝑒𝑦 log(𝑒𝑥 log 𝑎) = 𝑒𝑦(𝑥 log 𝑎) = 𝑒(𝑦𝑥) log 𝑎 = 𝑒(𝑥𝑦) log 𝑎 = 𝑎𝑥𝑦 .

We now obtain Proposition 11 part (c): for real 𝑝, the equality log 𝑥𝑝 = 𝑝 log 𝑥 holds.

Proof. We use the exponentiation rule (𝑎𝛼)𝛽 = 𝑎𝛼𝛽.15 Let 𝑦 := log 𝑥 so that (i) 𝑦𝑝 = 𝑝 log 𝑥. By our
definition of 𝑦, we know that 𝑥 = 𝑒𝑦 . From the exponentiation rules, 𝑥𝑝 = (𝑒𝑦)𝑝 = 𝑒𝑦𝑝 . By the
definition of the logarithm function, 𝑥𝑝 = 𝑒𝑦𝑝 can be written (ii) log(𝑥𝑝) = 𝑦𝑝. As (i) = (ii), we are
done.

Challenge 15
(a) Prove Proposition 19.
(b) Let 𝑎 be a positive real number. Show that the function 𝑎𝑥 is differentiable and find (𝑎𝑥)′.

Conclude that
∫
𝑎𝑥 𝑑𝑥 = 𝑎𝑥

log 𝑎 + 𝑐.
Challenge 16 (The Power Rule) Let 𝑎 be a real number and let 𝑓 : 𝑥 ↦→ 𝑥𝑎 for 𝑥 ∈ (0,∞). Show
that 𝑓 is differentiable and find 𝑓 ′. Deduce that for 𝑎 ≠ −1,

∫
𝑥𝑎 𝑑𝑥 = 𝑥𝑎+1

𝑎+1 + 𝑐.
The antiderivative of 𝑥𝑎 for 𝑎 = −1 is given by the logarithm function:

∫
𝑥−1 𝑑𝑥 = log |𝑥| + 𝑐.

Indeed, if 𝑥 < 0, then the chain rule gives (log |𝑥|)′ =
(
log(−𝑥)

) ′
= 1
−𝑥 · (−1) = 𝑥−1. The case of 𝑥 = 0

is undefined because 1/0 is undefined, while the positive case follows from the definition of the
logarithm function.16

15This is Proposition 19 part (e).
16Recall that the logarithm function is only defined on (0,∞). By chaining the function with the absolute value function,

we can define the function on negative real numbers.
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Challenge 17
(a) Differentiable functions are a nice class of continuous functions. This does not mean differ-

entiable functions can necessarily be integrated! Define 𝑓 : 𝑥 ↦→ 1/𝑥 on the interval (0, 1). By
the power rule, 𝑓 is differentiable. Calculate the integral of 𝑓 on the interval (𝛼, 1), for each
𝛼 satisfying 0 < 𝛼 < 1. Argue that 𝑓 cannot be integrated on the interval (0, 1).

(b) We find the integral
∫ 1
−1 𝑓 (𝑥) 𝑑𝑥 for the function 𝑓 : 𝑥 ↦→ 1/𝑥2. By the power rule, (−𝑥−1)′ =

1/𝑥2 and so the Fundamental Theorem of Calculus gives
∫ 1
−1 𝑓 (𝑥) 𝑑𝑥 = (−𝑥−1)

��1
𝑥=−1 = −2.

Even though 𝑓 is a positive function, its integral is negative! What did we do wrong?
What about negative numbers? Since the logarithm function is undefined for negative numbers
(and also 0), we do not have a way to define 𝑥𝑎 for all real 𝑥. Indeed, can we make sense of the
expression 𝑥𝑎 if 𝑥 = −1 and 𝑎 = 1/2? This question essentially asks: is there a number squared that
equals −1? Right now, the answer is a no, for we cannot square any real number to get a negative
number.
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Limits

We have been able to develop quite a bit of calculus. Nevertheless, there is an Achilles heel.
Suppose we presented our findings, beginning with what a derivative is. The question we are
going to get is: what is this object 𝑜(1)?

I hope that after working with it for quite some time, to both of us the object 𝑜(1)makes intuitive
sense. However, perhaps it is time we really think about what exactly 𝑜(1) is.

Let us revisit the definition of a derivative. If a function 𝑓 is differentiable at 𝑡, then there is a
number 𝑓 ′(𝑡) such that the following equation holds.1

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + 𝛼𝑜(1)

Subtract the number 𝑓 (𝑡) from both sides of the equation and divide both sides by 𝛼 to get

𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡)
𝛼

= 𝑓 ′(𝑡) + 𝑜(1).

What the equation above means is that if we drop 𝛼→ 0, then 𝑓 ′(𝑡) is given by the quotient on the
left side. Let us spell out the fact that we take 𝛼→ 0 by using the notation “lim" as follows.

𝑓 ′(𝑡) = lim
𝛼→0

𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡)
𝛼

Recall that a function 𝑓 is continuous at 𝑡 if 𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑜(1). We can also state the fact that we
drop 𝛼 to zero explicitly by using the notation “lim" as follows.

lim
𝛼→0

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡)

We say that a derivative is a limit, and that continuity of a function is defined by a limit.2
We see that when we were using 𝑜(1) and when we were working with derivatives and contin-

uous functions, we have been secretly working with limits. So what then is a limit?
1Since −𝑜(1) and 𝑜(1) are the same thing, we have removed the absolute value on 𝛼.
2Integrals can also be thought of being the result of some limiting process.

55
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4.1 What is a Limit?

Continuity

In the definition of the derivative, the limit is used to show us that the quotient 𝑓 (𝑡+𝛼)− 𝑓 (𝑡)
𝛼 gets

closer to the number 𝑓 ′(𝑡) as 𝛼 drops to smaller values. Similarly, in the definition of continuity,
the limit is used to signify that 𝑓 (𝑡 + 𝛼) gets closer to the number 𝑓 (𝑡) as 𝛼 drops to smaller values,
that is: as 𝛼 gets closer to 0. We will have to quantify what we mean by “close" in both instances.

To be concrete, suppose we have a function 𝑓 that takes as input time, and outputs distances.
For example, we can imagine that function 𝑓 describes the location of an object over time.

In order to quantify closeness in distances, we will need to pick a unit of measurement. But here
is a question: is 5 meters close? It is incredibly close in galactic scales, but quite far for an ant. A
micrometer will satisfy an ant, but is huge in atomic scales. Because of this, it is actually impossible
to satisfy everyone on what closeness means. So we will accept the fact that not everyone will be
in agreement, only that some will be in agreement. Then, we will consider all possible choice of
units of a distance so that at the end of the day, everyone will be satisfied.

So let us denote one possible choice of unit of distances 𝑢0. Units of measurement must be
positive, so 𝑢0 > 0. Once again, some will be disappointed at our choice of unit, but they will get
their turn because we will exhaust all possible units. We are simply beginning with 𝑢0. For this
turn, we will agree that the values 𝑓 (𝑥) and 𝑓 (𝑡) are close if their difference is within one unit, 𝑢0.
The naive expression 𝑓 (𝑥) − 𝑓 (𝑡) < 𝑢0 will hold if the left side is negative, regardless of whether
𝑓 (𝑥) and 𝑓 (𝑡) are close or not. Therefore, we will need to use absolute values, and we will say that
the values 𝑓 (𝑥) and 𝑓 (𝑡) are close if | 𝑓 (𝑥) − 𝑓 (𝑡)| < 𝑢0.

All done? Well not quite. Where are the inputs to function 𝑓 coming from? The inputs are
time, and we want distances 𝑓 (𝑥) and 𝑓 (𝑡) to be close whenever times 𝑥 and 𝑡 are close. To measure
closeness in time, once again, we will need to choose a unit of time. This choice of unit will depend
on the proportions of 𝑢0. For example, if 𝑢0 is of galactic scales, tens of thousands of years could be
sufficient, but in the scale of ants something much smaller will be required. But in any case, once
there is some unit of time 𝑢(𝑢0) which provides a closeness measure in time, we can proceed to
check that each time 𝑥 within that closeness measure of 𝑡 will allow 𝑓 (𝑥) to be close to 𝑓 (𝑡). If such
a unit 𝑢(𝑢0) exists, then we have satisfied some people that 𝑓 is continuous (nearby time maps to
nearby distance). We then choose another unit of distance and repeat the process.

To summarize: for each unit of distance 𝑢0 > 0, if there is some unit of time 𝑢(𝑢0) > 0 such that
| 𝑓 (𝑥)− 𝑓 (𝑡)| < 𝑢0 for each time 𝑥 satisfying |𝑥−𝑡| < 𝑢(𝑢0), then we can conclude that 𝑓 is continuous
at 𝑡. We write this compactly as lim𝑥→𝑡 𝑓 (𝑥) = 𝑓 (𝑡). Notice that redoing our previous discussion,
but replacing the input 𝑥 with 𝑡 + 𝛼 gives the analogous statement for lim𝛼→0 𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡).

A limit
Now let us turn to the definition of a derivative of a function 𝑓 at 𝑡. We will know that 𝑓 is

differentiable at 𝑡 with derivative 𝑓 ′(𝑡) once we verify that: for each unit of distance 𝑢0 > 0, there
is some unit of time 𝑢(𝑢0) > 0 such that���� 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡)

𝛼
− 𝑓 ′(𝑡)

���� < 𝑢0

for each time 𝑡 + 𝛼 satisfying |(𝑡 + 𝛼) − 𝑡| < 𝑢(𝑢0).
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There is a problem here. The time 𝑡 + 𝛼 for 𝛼 = 0 satisfies |(𝑡 + 𝛼) − 𝑡| < 𝑢(𝑢0) because 0 < 𝑢(𝑢0).
But if 𝛼 = 0, then the quotient 𝑓 (𝑡+𝛼)− 𝑓 (𝑡)

𝛼 is undefined as it is a division by zero! We will have to fix
this by insisting that we ignore the time 𝑡. Instead of looking at points 𝑡 + 𝛼 that are close to 𝑡 by
the unit 𝑢, we will look at points 𝑥 that are close to 𝑡 by the unit 𝑢, but not equal to 𝑡.

We summarize our finding. We will know that 𝑓 is differentiable at 𝑡 with derivative 𝑓 ′(𝑡) once
we verify that: for each unit of distance 𝑢0 > 0, there is some unit of time 𝑢(𝑢0) > 0 such that���� 𝑓 (𝑥) − 𝑓 (𝑡)𝑥 − 𝑡 − 𝑓 ′(𝑡)

���� < 𝑢0

for each time input 𝑥≠𝑡 satisfying |𝑥−𝑡| < 𝑢(𝑢0).3 We write this compactly as lim𝑥→𝑡
𝑓 (𝑥)− 𝑓 (𝑡)
𝑥−𝑡 = 𝑓 ′(𝑡).

Analogously, by replacing 𝑥 with 𝑡 + 𝛼: 𝑓 is differentiable at 𝑡 with derivative 𝑓 ′(𝑡) once we verify
that: for each unit of distance 𝑢0 > 0, there is some unit of time 𝑢(𝑢0) > 0 such that���� 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡)

𝛼
− 𝑓 ′(𝑡)

���� < 𝑢0

for each time input 𝑡 + 𝛼 with 0 < |𝛼| < 𝑢(𝑢0). This is written lim𝛼→0
𝑓 (𝑡+𝛼)− 𝑓 (𝑡)

𝛼 = 𝑓 ′(𝑡).
We have essentially obtained the definition of a limit. Tradition dictates that we denote the unit

of measurement for the output 𝑢0 by the Greek letter 𝜖 and the unit of measurement for the input
𝑢(𝑢0) by the Greek letter 𝛿(𝜖).

Definition 20. A function 𝑓 has a limit 𝑙 at input 𝑡, written lim𝑥→𝑡 𝑓 (𝑥) = 𝑙, if for each 𝜖 > 0, there
is some 𝛿(𝜖) > 0 such that whenever 𝑥≠𝑡 satisfies |𝑥 − 𝑡| < 𝛿(𝜖), we have

�� 𝑓 (𝑥) − 𝑙�� < 𝜖.

From the definition, it is sufficient to exhibit a strictly positive function 𝛿 with the property that
for each input 𝜖 > 0, whenever 𝑥≠𝑡 satisfies |𝑥 − 𝑡| < 𝛿(𝜖), we have

�� 𝑓 (𝑥) − 𝑙�� < 𝜖.4 This simply
formalizes the idea that we have a rule 𝛿 associating each unit of output 𝜖 to a unit of input 𝛿(𝜖).

As an example, let us show that a constant function 𝑓 : 𝑥 ↦→ 𝑐 for some constant 𝑐 satisfies
lim𝑥→𝑡 𝑓 (𝑥) = 𝑐 for each 𝑡. For 𝜖 > 0 let 𝛿(𝜖) := 𝜖. Then for each 𝑥≠𝑡 such that |𝑥 − 𝑡| < 𝛿(𝜖) = 𝜖, we
have | 𝑓 (𝑥) − 𝑓 (𝑡)| = |𝑐 − 𝑐| = 0 < 𝜖, as desired. The proof that 𝑔 : 𝑥 ↦→ 𝑥 satisfies lim𝑥→𝑡 𝑔(𝑥) = 𝑡 is
essentially the same, with the only difference being the last part: |𝑔(𝑥) − 𝑔(𝑡)| = |𝑥 − 𝑡| < 𝛿(𝜖) = 𝜖.

The definition of a limit looks very complicated. But it is complicated mainly because we have
several things to keep track of, necessitating the employment of many different symbols. The
definition itself is as natural and as simple as it could be: for each unit of measurement 𝜖 for
outputs, there will be a unit of measurement 𝛿(𝜖) for inputs such that each input that is close by
𝛿(𝜖) to 𝑡 (but not close by zero) will map to outputs that are close to 𝑙 by 𝜖. This modern definition
of a limit is due to Karl Weierstrass from the mid 19th Century (building upon the work of many
predecessors like Bernard Bolzano and Augustin Cauchy), almost two Centuries after the invention
of calculus!

With the definition of a limit settled, the definition of continuity is simple.

Definition 21. A function 𝑓 is continuous at 𝑡 if lim𝑥→𝑡 𝑓 (𝑥) = 𝑓 (𝑡).
3The notation 𝑥≠𝑡 means: “the number 𝑥, which is not equal to 𝑡".
4A function 𝑓 is strictly positive if its values are greater than 0, wherever it is defined.
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Let us check that the square root function 𝑓 : 𝑥 ↦→
√
𝑥 is continuous on the interval (0,∞). We

will show that if 𝑡 ∈ (0,∞), then lim𝑥→𝑡 𝑓 (𝑥) =
√
𝑡. Suppose 𝛿 is some strictly positive function.

For each 𝑥 satisfying |𝑥 − 𝑡| < 𝛿(𝜖), we use a multiplication by 1 trick and homogeneity to get���√𝑥 − √𝑡��� = �����(√𝑥 − √𝑡)√𝑥 + √𝑡√
𝑥 +
√
𝑡

����� =
����� 𝑥 − 𝑡
√
𝑥 +
√
𝑡

����� = |𝑥 − 𝑡|
|
√
𝑥 +
√
𝑡|

<
𝛿(𝜖)

|
√
𝑥 +
√
𝑡|
.

These expressions only make sense if 𝑥 ≥ 0 because a square root of a negative number is undefined.
We thus have a clue that we require 𝛿(𝜖) ≤ 𝑡. Next, we observe that the absolute value function
is an increasing function, and so if |𝑥 − 𝑡| < 𝑡,5 then |

√
𝑥 +
√
𝑡| ≥ |

√
𝑡|. Therefore, 1

|
√
𝑥+
√
𝑡| ≤

1
|
√
𝑡| .

Now define 𝛿 : 𝜖 ↦→ min
(
𝜖
√
𝑡 , 𝑡

)
.6 Since 𝛿(𝜖) ≤ 𝑡, we know that

√
𝑥 is defined. Furthermore, since

𝛿(𝜖) ≤ 𝜖
√
𝑡, ���√𝑥 − √𝑡��� < 𝛿(𝜖)

|
√
𝑥 +
√
𝑡|
≤ 𝛿(𝜖)
|
√
𝑡|
≤ 𝜖
√
𝑡

|
√
𝑡|

= 𝜖.

We conclude that the square root function is continuous on the interval (0,∞).

4.2 Arithmetic of Limits

Uniqueness
With the definition of a limit at hand, we proceed as we did for derivatives and see what kind

of arithmetic rules they permit.7 But first, we need to check that a limit of a function at a point is
unique, otherwise we will be in trouble!

Proposition 22 (Limits are unique). If lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and lim𝑥→𝑡 𝑓 (𝑥) = 𝑙2, then 𝑙1 = 𝑙2.

Proof. Let 𝜖 > 0. Since lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1, by the definition of a limit, there is a 𝛿1(𝜖) > 0 such that
| 𝑓 (𝑥) − 𝑙1| < 𝜖 for each input 𝑥≠𝑡 with |𝑥 − 𝑡| < 𝛿1(𝜖). Similarly, since lim𝑥→𝑡 𝑓 (𝑥) = 𝑙2, there is a
𝛿2(𝜖) > 0 such that | 𝑓 (𝑥) − 𝑙2| < 𝜖 for each input 𝑥≠𝑡 with |𝑥 − 𝑡| < 𝛿2(𝜖).

For one unit of measurement for the output there are two units of measurement for the input.
Two units of measurement for the input is one too many. We will err on the side of caution
and pick the smaller of the two by setting 𝛿(𝜖) := min ( 𝛿1(𝜖), 𝛿2(𝜖) ). The reasoning is this: we
want to measure closeness of inputs, and by being more stringent and picking a smaller unit
of measurement, we will offend no one. On the other hand, if we picked the larger unit of
measurement, then some will no longer agree that the inputs are close.

Our choice of unit 𝛿(𝜖)means that for each 𝑥≠𝑡 with |𝑥− 𝑡| < 𝛿(𝜖), we satisfy both |𝑥− 𝑡| < 𝛿1(𝜖)
and |𝑥 − 𝑡| < 𝛿2(𝜖). Therefore, | 𝑓 (𝑥) − 𝑙1| < 𝜖 and | 𝑓 (𝑥) − 𝑙2| < 𝜖 are both true whenever 𝑥≠𝑡 is
within 𝛿(𝜖) of 𝑡.

All that is left is to check that |𝑙1 − 𝑙2| = 0. By the triangle inequality,

|𝑙1 − 𝑙2| = |𝑙1 − 𝑓 (𝑥) + 𝑓 (𝑥) − 𝑙2| ≤ |𝑙1 − 𝑓 (𝑥)| + | 𝑓 (𝑥) − 𝑙2|.
5This is simply there to make sure 𝑥 is positive and thus

√
𝑥 is defined.

6The function “min" takes two inputs and outputs whichever is smaller. For example, min(−10, 2) = −10.
7The material in the rest of the chapter, although important, is not used in any essential way except for Section 6.4 and

can be skipped or read (very slowly) in parallel with Chapter 5 and Chapter 6.
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By homogeneity, |𝑙1 − 𝑓 (𝑥)| = | − 1|| 𝑓 (𝑥) − 𝑙1| = | 𝑓 (𝑥) − 𝑙1|. Therefore,

|𝑙1 − 𝑙2| ≤ | 𝑓 (𝑥) − 𝑙1| + | 𝑓 (𝑥) − 𝑙2| < 𝜖 + 𝜖 = 2𝜖.

But this must be true for any unit of measurement 𝜖, no matter how small. Thus the real number
|𝑙1 − 𝑙2| is a lower bound on the set of positive real numbers, and must be zero or smaller. By the
definition of the absolute value function, |𝑙1 − 𝑙2| ≥ 0, and so |𝑙1 − 𝑙2| = 0.

Sum rule
As we have done previously, the first arithmetic operation we will discuss is the summation of

limits. The sum rule for limits states that the sum of limits behaves just as expected.

Proposition 23 (Sum Rule). If lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and lim𝑥→𝑡 𝑔(𝑥) = 𝑙2, then

lim
𝑥→𝑡
( 𝑓 + 𝑔)(𝑥) = 𝑙1 + 𝑙2.

Proof. Let 𝜖 > 0. Our goal is to find a unit of measurement 𝛿(𝜖) > 0 that makes each 𝑥≠𝑡 close to 𝑡
map within unit 𝜖 of 𝑙1 + 𝑙2.

Since lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1, by the definition of a limit, there is some 𝛿1(𝜖) > 0 such that | 𝑓 (𝑥)− 𝑙1| < 𝜖
for each 𝑥≠𝑡 with |𝑥 − 𝑡| < 𝛿1(𝜖). Similarly, since lim𝑥→𝑡 𝑓 (𝑥) = 𝑙2, by the definition of a limit, there
is some 𝛿2(𝜖) > 0 such that | 𝑓 (𝑥) − 𝑙2| < 𝜖 for each 𝑥≠𝑡 with |𝑥 − 𝑡| < 𝛿2(𝜖).

Once again, there are two units of measurement for the input. We set 𝛿(𝜖) := min ( 𝛿1(𝜖), 𝛿2(𝜖) )
so that each input 𝑥≠𝑡 with |𝑥 − 𝑡| < 𝛿(𝜖)will satisfy both | 𝑓 (𝑥) − 𝑙1| < 𝜖 and | 𝑓 (𝑥) − 𝑙2| < 𝜖.

By the triangle inequality,��( 𝑓 + 𝑔)(𝑥) − (𝑙1 + 𝑙2)�� = �� 𝑓 (𝑥) − 𝑙1 + 𝑔(𝑥) − 𝑙2�� = �� 𝑓 (𝑥) − 𝑙1�� + ��𝑔(𝑥) − 𝑙2�� < 𝜖 + 𝜖 = 2𝜖.

The definition requires that in order to conclude lim𝑥→𝑡( 𝑓 + 𝑔)(𝑥) = 𝑙1 + 𝑙2, we need
��( 𝑓 + 𝑔)(𝑥) −

(𝑙1 + 𝑙2)
�� < 𝜖. But this can be achieved by changing the first statement of the proof to “Let 𝜖/2 > 0."

and then substituting all instances of 𝜖 by 𝜖/2. So we are done!

Product rule

Proposition 24 (Product Rule). If lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and lim𝑥→𝑡 𝑔(𝑥) = 𝑙2, then

lim
𝑥→𝑡
( 𝑓 𝑔)(𝑥) = 𝑙1 · 𝑙2.

The product rule for limits states that the products of limits behaves just as expected. However,
the proof will be quite hairy because it will not be sufficient to take the unit of input to be
𝛿(𝜖) := min ( 𝛿1(𝜖), 𝛿2(𝜖) ). To see this, let us see what our end goal of the proof is. Ultimately,
we want to show that each output ( 𝑓 𝑔)(𝑥) is close to 𝑙1𝑙2. That is, there is a suitable unit of
measurement for inputs such that inputs 𝑥≠𝑡 close to 𝑡 will guarantee

��( 𝑓 𝑔)(𝑥)− 𝑙1𝑙2�� < 𝑐 · 𝜖 for some
positive constant 𝑐.8 By applying the triangle inequality and homogeneity on a sneaky addition

8As in the proof of the sum rule, we can always scale 𝜖 by a positive constant 𝑐.
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and subtraction of the term 𝑓 (𝑥)𝑙2, the following holds.

|( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2| = | 𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑙2 + 𝑓 (𝑥)𝑙2 − 𝑙1𝑙2| ≤ | 𝑓 (𝑥)|︸︷︷︸
<???

|𝑔(𝑥) − 𝑙2|︸      ︷︷      ︸
<𝜖

+ | 𝑓 (𝑥) − 𝑙1|︸      ︷︷      ︸
<𝜖

|𝑙2|

Since lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and lim𝑥→𝑡 𝑓 (𝑥) = 𝑙2, the terms | 𝑓 (𝑥) − 𝑙1| and |𝑔(𝑥) − 𝑙2| are each less than 𝜖.
The term |𝑙2| is a constant, so that’s ok, but the term | 𝑓 (𝑥)| is not a constant, and that is a problem.
Our solution will be to choose a unit of measurement for the input such that inputs 𝑥≠𝑡 close to 𝑡
will satisfy | 𝑓 (𝑥)| < |𝑙1| + 1. Then, we will have��( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2�� ≤ | 𝑓 (𝑥)||𝑔(𝑥) − 𝑙2| + | 𝑓 (𝑥) − 𝑙1||𝑙2| < (|𝑙1| + 1)𝜖 + 𝜖|𝑙2| = (|𝑙1| + |𝑙2| + 1)𝜖,

where (|𝑙1| + |𝑙2| + 1) is simply a positive constant.
So how can ensure that | 𝑓 (𝑥)| < |𝑙1| + 1? We need a slight variation on the triangle inequality:

|𝑎| − |𝑏| ≤ |𝑎 − 𝑏|. Since | 𝑓 (𝑥)| < |𝑙1| + 1 is the same as | 𝑓 (𝑥)| − |𝑙1| < 1, the modified triangle
inequality shows us that it is sufficient to choose a unit of inputs 𝛿(𝜖) such that 𝑥 maps to values
satisfying | 𝑓 (𝑥) − 𝑙1| < 1. What does this mean? Well, if the unit of outputs 𝜖 satisfies 𝜖 ≤ 1, then
we know that | 𝑓 (𝑥) − 𝑙1| < 𝜖 ≤ 1 is true for an appropriate choice of unit 𝛿(𝜖), and all is well. The
problem is when the unit of outputs 𝜖 is greater than one, because now we can have situations
where | 𝑓 (𝑥) − 𝑙1| < 𝜖 but | 𝑓 (𝑥) − 𝑙1| ≥ 1, and the value | 𝑓 (𝑥)|may stray too far from 𝑙1.

But there is an easy fix! Whenever we have to make our choice of unit 𝛿(𝜖) and we are faced
with 𝜖 > 1, we pretend that 𝜖 = 1. For example, if 𝜖 is the distance from the sun to the earth, when
it comes time to pick our unit of inputs, we will be pessimistic and pick 𝛿(𝜖) as if 𝜖 is the distance
from the earth to the moon. This way, the values of | 𝑓 (𝑥)| will be even closer to 𝑙1 than usual, and
we can guarantee that | 𝑓 (𝑥)| < |𝑙1| + 1, say.

We now proceed to the proof of the product rule, which states that if lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and
lim𝑥→𝑡 𝑔(𝑥) = 𝑙2, then

lim
𝑥→𝑡
( 𝑓 𝑔)(𝑥) = 𝑙1 · 𝑙2.

Proof. We wish to show that there is some strictly positive function 𝛿 such that whenever 𝑥≠𝑡 is
within the distance of 𝛿(𝜖) to 𝑡, then

��( 𝑓 𝑔)(𝑥) − 𝑙1 · 𝑙2�� < 𝑐 · 𝜖 for some positive constant 𝑐.9 From
lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1, we know there is a strictly positive function 𝛿1 such that whenever 𝑥≠𝑡 is within
𝛿1(𝜖) of 𝑡, then

�� 𝑓 (𝑥) − 𝑙1�� < 𝜖. Similarly, from lim𝑥→𝑡 𝑔(𝑥) = 𝑙2, we know there is a strictly positive
function 𝛿2 such that whenever 𝑥≠𝑡 is within 𝛿2(𝜖) of 𝑡, then

��𝑔(𝑥) − 𝑙2�� < 𝜖. The triangle inequality
and homogeneity gives the following inequality, as we discussed before.

|( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2| ≤ | 𝑓 (𝑥)||𝑔(𝑥) − 𝑙2| + | 𝑓 (𝑥) − 𝑙1||𝑙2|

Let 𝛿 be the function defined by 𝛿 : 𝜖 ↦→ min ( 𝛿1(min(1, 𝜖)), 𝛿2(𝜖) ). The definition of 𝛿 is
difficult to parse, so below is the same in pseudocode. It is quite simple, we want to take the
minimum of 𝛿1(𝜖) and 𝛿2(𝜖), but before we do so, in order to make | 𝑓 (𝑥)| closer to |𝑙1| than usual,

9The nonzero constant 𝑐 has to stay the same, regardless of the value of 𝜖. Remember, the idea is that it is possible to
finish the proof, go back and do the substitution 𝜖 ↦→ 𝜖/𝑐. If 𝑐 changes with 𝜖, a substitution is no longer possible.
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we pretend 𝜖 = 1 for 𝛿1(𝜖)whenever 𝜖 > 1.

def 𝛿(𝜖):
if 𝜖 ≤ 1:
𝑑1 ← 𝛿1(𝜖)

else:
𝑑1 ← 𝛿1(1)

return min(𝑑1 , 𝛿2(𝜖))

There are two possibilities: either 𝜖 ≤ 1 or 𝜖 > 1. In the former case, for each input 𝑥≠𝑡 within
𝛿(𝜖) of 𝑡, we have��( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2�� ≤ | 𝑓 (𝑥)|︸︷︷︸

(∗)

|𝑔(𝑥) − 𝑙2|︸      ︷︷      ︸
(∗∗)

+ | 𝑓 (𝑥) − 𝑙1|︸      ︷︷      ︸
(∗∗∗)

|𝑙2| < (|𝑙1| + 𝜖)︸    ︷︷    ︸
(∗)

𝜖︸︷︷︸
(∗∗)

+ 𝜖︸︷︷︸
(∗∗∗)

|𝑙2|

The inequality | 𝑓 (𝑥)| < |𝑙1| + 𝜖 holds because | 𝑓 (𝑥)| − |𝑙1| ≤ | 𝑓 (𝑥) − 𝑙1| < 𝜖. Since 𝜖 ≤ 1,��( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2�� < (|𝑙1| + 𝜖)𝜖 + 𝜖 · |𝑙2| ≤ (|𝑙1| + 1)𝜖 + 𝜖 · |𝑙2| = (|𝑙1| + |𝑙2| + 1)𝜖.

How about the case when 𝜖 > 1? We treat 𝜖 as if it is 1, which was covered in the previous case,
so we are done!

The proof of the product rule for limits is difficult. I still remember first seeing a proof of this
result and being absolutely terrified! The digestion of this proof is not necessary to understand
and practice calculus, which is why we are diving into these matters after seeing calculus in action.

Now that we are done with the proof, let us note that only two new ideas were needed. First
was the sneaky manipulation

|( 𝑓 𝑔)(𝑥) − 𝑙1𝑙2| = | 𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑙2 + 𝑓 (𝑥)𝑙2 − 𝑙1𝑙2| ≤ | 𝑓 (𝑥)||𝑔(𝑥) − 𝑙2| + | 𝑓 (𝑥) − 𝑙1||𝑙2|. (4.1)

Second was the realization that defining 𝛿 : 𝜖 ↦→ min
(
𝛿1(𝜖), 𝛿2(𝜖)

)
is not enough. By Equation 4.1

above, we need to make sure that | 𝑓 (𝑥)| is small. We accomplished this by ensuring | 𝑓 (𝑥)| is within
distance 1 of |𝑙1|, regardless of the value of 𝜖.
Challenge 18 Suppose we have a function 𝑓 such that lim𝑥→𝑡 𝑓 (𝑥) = 𝑙 holds. By definition, there
is a function 𝛿 that takes as input a positive real number 𝜖 and outputs a positive real number such
that each 𝑥≠𝑡 that is within 𝛿(𝜖) distance of 𝑡 satisfies | 𝑓 (𝑥) − 𝑙| < 𝜖.

(a) Let 𝛿′ : 𝜖 ↦→ 𝛿(𝜖)/2. For each 𝑥≠𝑡 within 𝛿′(𝜖) of 𝑡, can we guarantee that | 𝑓 (𝑥) − 𝑙| < 𝜖 holds?
Repeat for 𝛿′′ : 𝜖 ↦→ 𝛿(𝜖)/𝑐, where 𝑐 > 1 is a constant.

(b) Instead of dividing, suppose we define 𝛿′ : 𝜖 ↦→ 2 · 𝛿(𝜖). If 𝑥≠𝑡 is within 𝛿′(𝜖) of 𝑡, can we
guarantee that | 𝑓 (𝑥) − 𝑙| < 𝜖? Repeat for 𝛿′′ : 𝜖 ↦→ 𝑐 · 𝛿(𝜖), where 𝑐 > 1 is a constant.

(c) Let 𝑐 > 1 be a constant. For each of the following definitions of 𝛿𝑖 , identify the ones that
guarantee that each 𝑥≠𝑡 within 𝛿𝑖(𝜖) of 𝑡 satisfies | 𝑓 (𝑥) − 𝑙| < 𝜖.

𝛿1 : 𝜖 ↦→ 𝛿(𝜖/2), 𝛿2 : 𝜖 ↦→ 𝛿(2𝜖), 𝛿3 : 𝜖 ↦→ 𝛿(𝜖/𝑐), 𝛿4 : 𝜖 ↦→ 𝛿(𝑐𝜖)
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(d) Now suppose we had two functions 𝛿∗ and 𝛿∗∗ such that each 𝑥≠𝑡 within 𝛿∗(𝜖) satisfies
| 𝑓 (𝑥) − 𝑙| < 𝜖, and each 𝑥≠𝑡 within 𝛿∗∗(𝜖) satisfies | 𝑓 (𝑥) − 𝑙| < 𝜖. Does the function 𝛿̃ defined
below ensure that each 𝑥≠𝑡 within 𝛿∗(𝜖) satisfy | 𝑓 (𝑥) − 𝑙| < 𝜖?

𝛿̃ : 𝜖 ↦→ min ( 𝛿∗(𝜖), 𝛿∗∗(𝜖) )

(e) Repeat part (d), but this time assume that 𝛿∗∗ is some mystery function that takes in a positive
real number and outputs some random positive real number. The function 𝛿∗ is the same as
before.

The definition of a limit is often written concisely using the symbol ∀, which reads: “for each",
the symbol ∃, which reads: “there is" or “there exists", and the symbol =⇒ , which reads “implies".
Using these symbols the expression limℎ→𝑦 𝑓 (ℎ) = 𝑙 means

(∀𝜖 > 0)(∃𝛿(𝜖) > 0)(∀𝑥 ∈ ℝ)
(
0 < |𝑥 − 𝑡| < 𝛿(𝜖) =⇒ | 𝑓 (𝑥) − 𝑙| < 𝜖

)
.

Challenge 19
(a) Suppose someone told you that: a function 𝑓 has a limit 𝑙 at a point 𝑡, if for each 𝛿 > 0,

there is some 𝜖 > 0 such that for each 𝑥≠𝑡 satisfying |𝑥 − 𝑡| < 𝛿, we have
�� 𝑓 (𝑥) − 𝑙�� < 𝜖. Write

this “definition" down using the symbols ∀, ∃, and =⇒ . Give some intuition as to why this
“definition" is incorrect.10 Our habit of writing 𝛿(𝜖) should tip you off immediately!

(b) Suppose we were trying to prove that lim𝑥→𝑡 𝑓 (𝑥) = 𝑙, but when working with a specific
value of 𝜖, we failed to find a 𝛿(𝜖) > 0 that guarantees 0 < |𝑥 − 𝑡| < 𝛿(𝜖) ⇒ | 𝑓 (𝑥) − 𝑙| < 𝜖. We
are forced to conclude that lim𝑥→𝑡 𝑓 (𝑥) ≠ 𝑙. Write the definition of lim𝑥→𝑡 𝑓 (𝑥) ≠ 𝑙 using the
symbols ∀, ∃, and⇒.11

(c) Show that the following proposed “definition" of lim𝑥→𝑡 𝑓 (𝑥) = 𝑙 is incorrect by using it prove
that if 𝑓 : 𝑥 ↦→ 𝑐 for some constant 𝑐, then lim𝑥→0 𝑓 (𝑥) ≠ 𝑐.12

(∀𝜖 > 0)(∃𝛿(𝜖) > 0)(∀𝑥 ∈ ℝ)
(
| 𝑓 (𝑥) − 𝑙| < 𝜖 =⇒ 0 < |𝑥 − 𝑡| < 𝛿(𝜖)

)
Quotient rule

We have one more arithmetic rule left: division.13

Proposition 25 (Quotient Rule). Let lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and let 𝑔 be a nonzero function with
lim𝑥→𝑡 𝑔(𝑥) = 𝑙2 ≠ 0. Then

lim
𝑥→𝑡
( 𝑓 /𝑔)(𝑥) = 𝑙1/𝑙2.

This is also tricky, but no more difficult than the product rule. We will first show that
lim𝑥→𝑡(1/𝑔)(𝑥) = 1/𝑙2, and then apply the product rule. As usual, we wish to show that

10Here is one answer. A function 𝑓 is continuous at 𝑡 if lim𝑥→𝑡 𝑓 (𝑥) = 𝑓 (𝑡). So the “definition" tells us that if we zoom
into the graph of the function by decreasing the unit of measurement of the input, we will see whether the function is
continuous. Consider a constant ℏ whose numerical value is about 10−34. Try zooming in on the 𝑥-axis of the step function
𝑓 : 𝑥 ↦→ ℏ if 𝑥 < 0 and 𝑓 : 𝑥 ↦→ 0 if 𝑥 ≥ 0, and it won’t help at all! The graph will continue to look like a constant function
with no change. What we need to do is zoom into the graph by decreasing the unit of measurement in the 𝑦-axis so that
we can make out the step from zero to ℏ around 𝑥 = 0.

11Answer: (∃𝜖 > 0)(∀𝛿(𝜖) > 0)(∃𝑥 ∈ ℝ)
(
0 < |𝑥 − 𝑡| < 𝛿(𝜖) ⇒ | 𝑓 (𝑥) − 𝑙| ≥ 𝜖

)
.

12Hint: we will first need to repeat part (b) for this new “definition".
13Subtraction is verified in the same way as the subtraction rule for derivatives.
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|(1/𝑔)(𝑥) − 1/𝑙2| < 𝑐 · 𝜖 for some constant 𝑐. Using homogeneity and the identity 1
𝑎 − 1

𝑏 = 𝑏−𝑎
𝑎𝑏

gives ���� 1
𝑔(𝑥) −

1
𝑙2

���� = |𝑙2 − 𝑔(𝑥)||𝑔(𝑥)𝑙2|
=
|𝑔(𝑥) − 𝑙2|
|𝑙2|︸      ︷︷      ︸

<𝜖/|𝑙2|

· 1
|𝑔(𝑥)|︸ ︷︷ ︸
<???

.

Like before, we need to pick some unit of measurement for the input such that 1/|𝑔(𝑥)| is bounded.
Let us try to bound 1/|𝑔(𝑥)| by some positive constant. Observe that if |𝑔(𝑥) − 𝑙2| < min(𝜖, 𝑋),

then the inequality |𝑎| − |𝑏| ≤ |𝑎 − 𝑏| gives

|𝑙2| − |𝑔(𝑥)| ≤ |𝑙2 − 𝑔(𝑥)| < 𝑋.

The idea is to repeat what we did in the product rule: if 𝜖 is too big (for the product rule, whenever
𝜖 > 1), then we pretend 𝜖 is smaller. In this case, if 𝜖 is too big, then we pretend as if 𝜖 = 𝑋.
Assuming that |𝑙2| − 𝑋 is positive, rearranging the inequality above gives

|𝑙2| − 𝑋 < |𝑔(𝑥)| =⇒ 1
|𝑔(𝑥)| <

1
|𝑙2| − 𝑋

.

For example, if 𝑋 := |𝑙2|/2, then |𝑙2| − 𝑋 = 𝑋 and we have 1/|𝑔(𝑥)| < 2/|𝑙2|.

Proof. First, we show that if 𝑔 is nonzero with lim𝑥→𝑡 𝑔(𝑥) = 𝑙2 ≠ 0, then lim𝑥→𝑡(1/𝑔)(𝑥) = 1/𝑙2. By
assumption, there is some positive function 𝛿′ such that each 𝑥≠𝑡 within 𝛿′(𝜖) satisfies |𝑔(𝑥)− 𝑙2| < 𝜖.
Recall from our preliminary discussion that homogeneity gives���� 1

𝑔(𝑥) −
1
𝑙2

���� = |𝑔(𝑥) − 𝑙2||𝑙2|
1
|𝑔(𝑥)| .

Observe that if |𝑔(𝑥) − 𝑙2| < min(𝜖, |𝑙2|/2), then the inequality |𝑎| − |𝑏| ≤ |𝑎 − 𝑏| gives

|𝑙2| − |𝑔(𝑥)| ≤ |𝑙2 − 𝑔(𝑥)| <
|𝑙2|
2 =⇒ |𝑙2| −

|𝑙2|
2 < |𝑔(𝑥)| =⇒ 1

|𝑔(𝑥)| <
2
|𝑙2|

.

Let 𝛿 : 𝜖 ↦→ 𝛿′ (min(𝜖, |𝑙2|/2) ). Then each 𝑥≠𝑡 within distance 𝛿(𝜖) of 𝑡 satisfies���� 1
𝑔(𝑥) −

1
𝑙2

���� = |𝑔(𝑥) − 𝑙2||𝑙2|︸      ︷︷      ︸
(∗)

1
|𝑔(𝑥)|︸ ︷︷ ︸
(∗∗)

<
𝜖

|𝑙2|︸︷︷︸
(∗)

2
|𝑙2|︸︷︷︸
(∗∗)

=
2
|𝑙2|2

𝜖.

We have found a strictly positive function 𝛿 such that no matter what 𝜖 > 0 we may need to work
with, our function 𝛿 ensures that each 𝑥≠𝑡 within 𝛿(𝜖) of 𝑡 satisfies��(1/𝑔)(𝑥) − 1/𝑙2

�� < 𝑐 · 𝜖

for the constant 𝑐 := 2/|𝑙2|2. Hence lim𝑥→𝑡(1/𝑔)(𝑥) = 1/𝑙2. The final result is obtained by applying
the product rule to 𝑓 · (1/𝑔) for a function 𝑓 satisfying lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1.
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The quotient rule is incredibly useful. For one thing, a derivative is a limit of a quotient! As an
example, let us calculate the derivative of the square root function 𝑓 : 𝑥 ↦→

√
𝑥 for 𝑥 > 0 from scratch.

There are now many definitions to choose from. How about we use 𝑓 ′(𝑥) := lim𝛼→0
𝑓 (𝑥+𝛼)− 𝑓 (𝑥)

𝛼 .
First, we need to do some algebraic manipulations. We use the trick of multiplying by 1 and
simplifying to get the following.

𝑓 (𝑥 + 𝛼) − 𝑓 (𝑥)
𝛼

=

√
𝑥 + 𝛼 −

√
𝑥

𝛼
=

√
𝑥 + 𝛼 −

√
𝑥

𝛼

(√
𝑥 + 𝛼 +

√
𝑥√

𝑥 + 𝛼 +
√
𝑥

)
=

𝛼

𝛼(
√
𝑥 + 𝛼 +

√
𝑥)

=
1√

𝑥 + 𝛼 +
√
𝑥

Earlier on, we showed that the square root function is continuous. Thus lim𝛼→0
√
𝑥 + 𝛼 =

√
𝑥 and

we have

𝑓 ′(𝑥) = lim
𝛼→0

1√
𝑥 + 𝛼 +

√
𝑥
=

lim𝛼→0 1
lim𝛼→0(

√
𝑥 + 𝛼 +

√
𝑥)

=
1√

𝑥 +
√
𝑥
=

1
2
√
𝑥
= (1/2)(𝑥−1/2).

As we expected from the power rule: (𝑥1/2)′ = (1/2)(𝑥−1/2).
The differentiation rule that corresponds to the quotient rule for limits is the quotient rule for

derivatives. Let us rederive the quotient rule for derivatives, albeit in slightly greater generality
than we have done before. We will first obtain the reciprocal rule (1/ 𝑓 )′ = − 𝑓 ′/ 𝑓 2.

Proposition 26 (Reciprocal Rule). Suppose 𝑓 is differentiable at 𝑡 and 𝑓 (𝑡) is nonzero. Then

(1/ 𝑓 )′(𝑡) = − 𝑓 ′(𝑡)[
𝑓 (𝑡)

]2 .

Proof. We start with a definition of the derivative and go from there.

(1/ 𝑓 )′(𝑡) = lim
𝛼→0

1
𝑓 (𝑡+𝛼) −

1
𝑓 (𝑡)

𝛼
= lim

𝛼→0

𝑓 (𝑡) − 𝑓 (𝑡 + 𝛼)
𝛼 𝑓 (𝑡 + 𝛼) 𝑓 (𝑡) = lim

𝛼→0

(
𝑓 (𝑡) − 𝑓 (𝑡 + 𝛼)

𝛼
· 1
𝑓 (𝑡 + 𝛼) 𝑓 (𝑡)

)
We are in a position to apply the product rule. Since 𝑓 is differentiable at 𝑡, it is continuous at 𝑡.
Hence lim𝛼→0 𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) and we have(

1
𝑓

) ′
(𝑡) = lim

𝛼→0

−[ 𝑓 (𝑡 + 𝛼) − 𝑓 (𝑡)]
𝛼

lim
𝛼→0

1
𝑓 (𝑡 + 𝛼) 𝑓 (𝑡) = − 𝑓

′(𝑡) lim𝛼→0 1
𝑓 (𝑡) lim𝛼→0 𝑓 (𝑡 + 𝛼) = −

𝑓 ′(𝑡)
𝑓 (𝑡)2 .

The reciprocal can be generalized into the quotient rule. This time we no longer need the
assumption that ( 𝑓 /𝑔) is differentiable. That ( 𝑓 /𝑔) is differentiable is a consequence of the quotient
rule.

Proposition 27 (Quotient Rule). Suppose 𝑓 and 𝑔 are differentiable at 𝑡, with 𝑔(𝑡) ≠ 0. Then ( 𝑓 /𝑔)
is differentiable at 𝑡 with ( 𝑓 /𝑔)′(𝑡) = 𝑓 ′(𝑡)𝑔(𝑡)− 𝑓 (𝑡)𝑔′(𝑡)

[𝑔(𝑡)]2 .
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Proof. By the reciprocal rule, the function (1/𝑔) is differentiable at 𝑡 and so we may apply the product
rule to obtain ( 𝑓 ·1/𝑔)′(𝑡) = ( 𝑓 ′/𝑔)(𝑡)+[ 𝑓 (1/𝑔)′](𝑡). By the reciprocal rule, (1/𝑔)′(𝑡) = −𝑔′(𝑡)/[𝑔(𝑡)2]
and so (

𝑓

𝑔

) ′
(𝑡) = 𝑓 ′(𝑡)

𝑔(𝑡) −
𝑓 (𝑡)𝑔′(𝑡)
𝑔(𝑡)2 =

𝑓 ′(𝑡)𝑔(𝑡) − 𝑓 (𝑡)𝑔′(𝑡)
𝑔(𝑡)2 .

This rule is rather difficult to memorize correctly (but it will be memorized after you apply this
rule many times over). Initially, it might be easier to obtain the correct formula from scratch by
obtaining the product rule from dimensional analysis and then applying it to the product ( 𝑓 /𝑔) · 𝑔
to find the quotient rule. The reciprocal rule then also comes for free and there is no need to worry
about whether you got the minus sign in the correct place.

The following is an application of the quotient rule for limits.

Theorem 28 (L’Hospital’s Rule). Suppose 𝑓 and 𝑔 are differentiable at 𝑡with 𝑔′(𝑡) ≠ 0. Furthermore,
assume that 𝑓 (𝑡) = 𝑔(𝑡) = 0. Then

lim
𝑥→𝑡

𝑓 (𝑥)
𝑔(𝑥) =

𝑓 ′(𝑡)
𝑔′(𝑡) .

In addition if 𝑓 ′ and 𝑔′ are continuous at 𝑡, then

lim
𝑥→𝑡

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→𝑡

𝑓 ′(𝑥)
𝑔′(𝑥) .

Proof. Since 𝑓 and 𝑔 are differentiable at 𝑡,

𝑓 ′(𝑡)
𝑔′(𝑡) =

lim𝑥→𝑡
𝑓 (𝑥)− 𝑓 (𝑡)
𝑥−𝑡

lim𝑥→𝑡
𝑔(𝑥)−𝑔(𝑡)
𝑥−𝑡

.

By the quotient rule, the limit can be pulled out. Since 𝑓 (𝑡) = 𝑔(𝑡) = 0, and 𝑥 − 𝑡 is nonzero (by the
definition of a limit), we have

𝑓 ′(𝑡)
𝑔′(𝑡) = lim

𝑥→𝑡

𝑓 (𝑥)− 𝑓 (𝑡)
𝑥−𝑡

𝑔(𝑥)−𝑔(𝑡)
𝑥−𝑡

= lim
𝑥→𝑡

𝑓 (𝑥)
𝑥−𝑡
𝑔(𝑥)
𝑥−𝑡

= lim
𝑥→𝑡

𝑓 (𝑥)
𝑔(𝑥) .

If 𝑓 ′ and 𝑔′ are continuous at 𝑡, then certainly 𝑓 ′

𝑔′ (𝑡) = lim𝑥→𝑡
𝑓 ′

𝑔′ (𝑥).

Since continuity is defined by limits, the sum, difference, products, and quotients of continuous
functions are also continuous.

4.3 Further Notions

Little oh
The object 𝑜(1) denotes the set of functions 𝑓 with the property lim𝑥→0 𝑓 (𝑥) = 0 and 𝑓 (0) = 0.

Thus the expression 𝑓 = 𝑜(1) means that 𝑓 is an element of 𝑜(1). This means that the expression
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𝑜(1) = 𝑓 is incorrect because the set 𝑜(1) cannot be an element of a function. On the other hand, the
expression 𝑐 · 𝑜(1) = 𝑜(1)means that the objects on both sides of the equation are the same objects.

There is a more general concept: if 𝑔 is a nonzero function, then 𝑓 = 𝑜(𝑔)means that

lim
𝑥→0

𝑓 (𝑥)
𝑔(𝑥) = 0 with ( 𝑓 /𝑔)(0) = 0.

If 𝑔 : 𝑥 ↦→ 1, then we recover 𝑓 = 𝑜(1). Indeed, from the definition, for each positive 𝑐 > 0,
𝑜(𝑐) = 𝑜(1). Once again, the object 𝑜(𝑔) is the set of functions with the above property, and 𝑓 = 𝑜(𝑔)
means that 𝑓 is an element of the set 𝑜(𝑔). Using this notation, the definition of the derivative may
be written using 𝑜(𝛼) in place of |𝛼|𝑜(1). Thus 𝑓 is differentiable at 𝑡 if there is a number 𝑓 ′(𝑡) such
that the following holds.

𝑓 (𝑡 + 𝛼) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝛼 + 𝑜(𝛼)

Challenge 20
(a) Use the well-ordering principle to show that 𝑥𝑛 = 𝑜(𝑒𝑥) for each positive integer 𝑛.
(b) For a nonzero constant 𝐶 and integer 𝑘, check that lim|𝑥−𝑎|→0

[∫ 𝑥

𝑎
𝐶(𝑥 − 𝑎)𝑘 𝑑𝑡

]
/(𝑥 − 𝑎)𝑘 = 0.

Hence
∫ 𝑥

𝑎
𝐶(𝑥 − 𝑎)𝑘 𝑑𝑡 = 𝑜(|𝑥 − 𝑎|𝑘).

(c) By definition 𝛼·𝑜(1) and 𝑜(𝛼) are the same objects (𝛼 is not a constant!). Check that 𝑜(𝛼)+𝑜(𝛼) =
𝑜(𝛼), that for each constant 𝑐, 𝑐 · 𝑜(𝛼) = 𝑜(𝛼), and that 𝑜(𝛼)𝑜(𝛼) = 𝑜(𝛼).

Taylor Series

Recall Taylor’s Theorem (Theorem 9) that if function 𝑓 is (𝑘 + 1)-times differentiable then

𝑓 (𝑥) =
𝑘∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 +

∫ 𝑥

𝑥0

𝑓 (𝑘+1)(𝑡)
𝑘! (𝑥 − 𝑥0)𝑘 𝑑𝑡.

If 𝑓 (𝑘+1) is unbounded, we are in trouble, so we may assume that it is bounded by some constant 𝐶
on the interval with endpoints 𝑥 and 𝑥0. By Challenge 20, Taylor’s Theorem takes the form

𝑓 (𝑥) =
𝑘∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 + 𝑜(|𝑥 − 𝑥0|𝑘).

Taking 𝑘 = 1 allows us to recover the definition of the derivative at 𝑥.
A critical point is a point 𝑥 such that 𝑓 ′(𝑥) = 0 or 𝑓 is not differentiable at 𝑥. If 𝑓 is three times

differentiable we can use Taylor’s theorem for tiny perturbations 𝛼 := 𝑥 − 𝑥0 to check whether 𝑓 (𝑥)
is smaller/larger than points nearby. If 𝑓 ′(𝑥) = 0, then for tiny 𝛼, we can ignore the remainder
term 𝑜(|𝛼|𝑘) to get

𝑓 (𝑥 + 𝛼) − 𝑓 (𝑥) = 𝑓 ′(𝑥)𝛼 + 𝑓 ′′(𝑥)𝛼2/2 = 𝑓 ′′(𝑥)𝛼2/2.

If 𝑓 ′′(𝑥) > 0, then 𝑓 (𝑥 + 𝛼) ≥ 𝑓 (𝑥) for each tiny 𝛼 and so 𝑓 (𝑥) is a local minimum. On the other
hand, if 𝑓 ′′(𝑥) < 0, then 𝑓 (𝑥 + 𝛼) ≤ 𝑓 (𝑥) for each tiny 𝛼 and so 𝑓 (𝑥) is a local maximum. This
method for identifying local minima/maxima is called the second derivative test.
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If function 𝑓 is infinitely differentiable, that is differentiable arbitrarily many times (like 𝑒𝑥 or
any polynomial), then if 𝑥 and 𝑥0 are “close", we can ignore the little oh term and write

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓 ′′(𝑥0)

2! (𝑥 − 𝑥0)2 +
𝑓 ′′′(𝑥0)

3! (𝑥 − 𝑥0)3 + · · ·

where the dot dot dot means we can add as many terms to the Taylor polynomial as we wish. The
above is called a Taylor series of 𝑓 at 𝑥0 or a Taylor expansion of function 𝑓 about 𝑥0.
Challenge 21 If 𝑓 is four times differentiable with 𝑓 ′(𝑥) = 𝑓 ′′(𝑥) = 0 and 𝑓 (3)(𝑥) ≠ 0, argue that
𝑓 (𝑥) cannot be a local maximum nor a local minimum. What can we say about the critical point of
the function 𝑓 : 𝑥 ↦→ 𝑥3? Let 𝑔 be five times differentiable with 𝑔′(𝑥) = 𝑔′′(𝑥) = 𝑔(3)(𝑥) = 0. Obtain
the fourth derivative test and apply it to the critical point of function 𝑔 : 𝑥 ↦→ 𝑥4.
Challenge 22 Check that the following Taylor series at 0 hold.

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 + 𝑛(𝑛 − 1)
2! 𝑥2 + 𝑛(𝑛 − 1)(𝑛 − 2)

3! 𝑥3 + · · ·
√

1 + 𝑥 = 1 + 𝑥2 −
𝑥2

8 + · · ·

1/
√

1 + 𝑥 = 1 − 𝑥2 +
3𝑥2

8 + · · ·

𝑒𝑥 = 1 + 𝑥

1! +
𝑥2

2! +
𝑥3

3! + · · ·

log(1 + 𝑥) = 𝑥 − 𝑥
2

2 +
𝑥3

3 + · · ·

One sided limits

Outside this book, if you see 𝑓 = 𝑜(𝑔) in the wild, it will mean the following limit is satisfied.

lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = 0

The meaning is the same: 𝑓 is negligible compared to 𝑔, or in the case of 𝑓 = 𝑜(1), that 𝑓 is negligible.
The symbol lim𝑥→∞ 𝑓 (𝑥) = 𝑙 means: as 𝑥 is allowed to grow, 𝑓 (𝑥) approaches the number 𝑙. To

capture the idea that the input is allowed to grow, we pick some height level 𝑛 > 0 and then check
that for each input 𝑥 exceeding that height, | 𝑓 (𝑥) − 𝑙| < 𝜖. But one height that is large for one entity
will be microscopic to another. So we need to consider all possible height levels of the input. The
formal definition of the expression lim𝑥→∞ 𝑓 (𝑥) = 𝑙 is then: for each 𝜖 > 0, there is some positive
integer 𝑛 such that for each 𝑥 > 𝑛, we have | 𝑓 (𝑥) − 𝑙| < 𝜖.
Challenge 23 Show that if lim𝑥→∞ 𝑓 (𝑥) = 𝑙1 and lim𝑥→∞ 𝑔(𝑥) = 𝑙2 then lim𝑥→∞( 𝑓 + 𝑔)(𝑥) = 𝑙1+ 𝑙2.
Also show that if 𝑐 is a real number then lim𝑥→∞ 𝑐 · 𝑓 (𝑥) = 𝑐 · 𝑙1.

In the case of lim𝑥→∞, there is a distinguished direction in which we take the limit: from smaller
values of 𝑥 to larger values (to our right). On the other hand, the square root function 𝑓 : 𝑥 ↦→

√
𝑥

graphed below is undefined for negative real numbers, so there is no way to take a limit from
smaller 𝑥 to larger 𝑥 at the origin, because 𝑥 will be negative.
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𝑥

√
𝑥

1

1

Nevertheless, we wish to speak of a limit of the square root function at the origin, as it clearly
should take the limit value of 0. We formalize this with a one sided limit.

Function 𝑓 has a limit 𝑙 from above at input 𝑡, if for each 𝜖 > 0, there is a 𝛿(𝜖) > 0 such that
each 𝑥 ∈ (𝑡 , 𝑡 + 𝛿(𝜖)) satisfies 𝑓 (𝑥) ∈

(
𝑙 − 𝜖, 𝑙 + 𝜖

)
. We write this using the notation lim𝑥→𝑡+ 𝑓 (𝑥) = 𝑙.

Notice that the statement 𝑓 (𝑥) ∈
(
𝑙 − 𝜖, 𝑙 + 𝜖

)
is equivalent to the statement | 𝑓 (𝑥) − 𝑙| < 𝜖. Both

statements mean the same thing: 𝑓 (𝑥) is within distance 𝜖 of point 𝑙. Hence if | 𝑓 (𝑥) − 𝑙| < 𝜖 then
𝑙 − 𝜖 < 𝑓 (𝑥) < 𝑙 + 𝜖.
Challenge 24

(a) Verify that lim𝑥→0+
√
𝑥 = 0.

(b) Formulate a definition for a function 𝑓 to have a limit 𝑙 from below at point 𝑡. The symbol
used in such a case is lim𝑥→𝑡− 𝑓 (𝑥) = 𝑙.

(c) Suppose we have a function 𝑓 such that lim𝑥→𝑡 𝑓 (𝑥) = 𝑙. Show that not only do both
lim𝑥→𝑡+ 𝑓 (𝑥) and lim𝑥→𝑡− 𝑓 (𝑥) exist, but they are equal.

(d) Suppose we have a function 𝑓 with the property that lim𝑥→𝑡+ 𝑓 (𝑥) = lim𝑥→𝑡− 𝑓 (𝑥). Show that
lim𝑥→𝑡 𝑓 (𝑥) exists. Combining parts (c) and (d), we say that lim𝑥→𝑡 𝑓 (𝑥) exists if and only if
lim𝑥→𝑡+ 𝑓 (𝑥) = lim𝑥→𝑡− 𝑓 (𝑥). The term “if and only if" indicates equivalence.

Although a derivative is a limit, we cannot conclude that the derivative at an input exists because
both its limits from above and below at the input exist and are equal. For example, if 𝑔 : 𝑥 ↦→ 𝑥(𝑥 +
1)/𝑥 (defined for nonzero real numbers), then 𝑔′ : 𝑥 ↦→ 1 for nonzero 𝑥. Therefore lim𝑥→0+ 𝑔′(𝑥) =
lim𝑥→0− 𝑔′(𝑥) = 1, however 𝑔′(0) does not exist (cf. Challenge 9). The problem of course is that 𝑔 is
not continuous at the origin, as it is undefined there. If in addition, we define 𝑔(0) := 1, then there
is no such problem.

Limits and inequalities

Whenever we use properties like if | 𝑓 | ≤ 𝑜(1), then 𝑓 = 𝑜(1), we are using limits with inequalities.
We now check that limits work as expected with inequalities.

Proposition 29. If 𝑓 ≤ 𝑔 with lim𝑥→𝑡 𝑓 (𝑥) = 𝑙1 and lim𝑥→𝑡 𝑔(𝑥) = 𝑙2, then 𝑙1 ≤ 𝑙2.

Proof. We need to show that 𝑙 := 𝑙2 − 𝑙1 ≥ 0. In order to derive a contradiction, suppose 𝑙 < 0.
By assumption, the function ℎ : 𝑥 ↦→ 𝑔(𝑥) − 𝑓 (𝑥) is a positive function. By the sum rule,

lim𝑥→𝑡 ℎ(𝑥) = 𝑙2 − 𝑙1 = 𝑙 < 0, and so there is some positive function 𝛿 such that for each 𝑥≠𝑡
within 𝛿(𝜖) of 𝑡, we have |ℎ(𝑥) − 𝑙| < 𝜖. In particular, |𝑙|/2 is the positive real number −𝑙/2 and
so each 𝑥≠𝑡 within 𝛿(−𝑙/2) of 𝑡 satisfies |ℎ(𝑥) − 𝑙| < −𝑙/2. Since ℎ(𝑥) is within −𝑙/2 of 𝑙, we have
ℎ(𝑥) < 𝑙 − 𝑙/2 = 𝑙/2 < 0, contradicting the fact that ℎ is a positive function.

How about if we bound a function from above and below and then squeeze?
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Theorem 30 (Squeeze Theorem). Suppose we have functions 𝑓 , 𝑔 and ℎ with 𝑓 (𝑥) ≤ ℎ(𝑥) ≤ 𝑔(𝑥).
If lim𝑥→𝑡 𝑓 (𝑥) = lim𝑥→𝑡 𝑔(𝑥) = 𝑙, then lim𝑥→𝑡 ℎ(𝑥) = 𝑙.

Challenge 25
(a) If 𝑓 is differentiable on (𝑎, 𝑏)with 𝑓 (𝑥) a local maximum/minimum, show that 𝑓 ′(𝑥) = 0.
(b) Prove the Squeeze Theorem.14

And that is it, you have successfully tackled the most difficult topic in calculus! As I mentioned
before, the idea of a limit is the culmination of nearly two centuries of investigation. It is truly a
difficult concept, but know you know what a limit is, and why we need it.

4.4 Continuous Functions

Continuity and intervals
The idea of continuous functions is that close inputs map to close outputs. We were able to

formalize this idea with the definition of a limit. Yet, something is very off: if inputs are close
by 𝛿(𝜖), then we check if their outputs are close by 𝜖. But this is not what we have done: we are
satisfied as long as the outputs are close by 𝑐 · 𝜖 for some positive constant 𝑐. As an example, in
Challenge 25, you will have likely concluded that

|ℎ(𝑥) − 𝑙| ≤ |ℎ(𝑥) − 𝑓 (𝑥)| + | 𝑓 (𝑥) − 𝑙| ≤ |𝑔(𝑥) − 𝑙| + |𝑙 − 𝑓 (𝑥)| + | 𝑓 (𝑥) − 𝑙| < 𝜖 + 𝜖 + 𝜖 = 3𝜖.

This is comparatively mild, for in the proof of product rule, we obtained a constant |𝑙1| + |𝑙2| + 1.
Imagine if |𝑙1| = 10100! At this point, can we really say that the outputs are nearby?

Well yes! Even a gigantic number like 10100 can be scaled to a small number like 1 with some
choice of unit. Once again, something being large is a relative statement, rather than an absolute
one. This is why we need to consider all possible values of 𝜖.

But this raises a conundrum, for “closeness" is also a relative statement, not an absolute one.
This suggests that chasing after “closeness" is perhaps not right.

Here is our current definition of continuity: a function 𝑓 is continuous at 𝑡 if for each 𝜖 > 0,
there is some 𝛿(𝜖) > 0 such that for each 𝑥 satisfying |𝑥 − 𝑡| < 𝛿(𝜖), we have | 𝑓 (𝑥) − 𝑓 (𝑡)| < 𝜖. It is
the same as the definition of a limit, except that since lim𝑥→𝑡 𝑓 (𝑥) = 𝑓 (𝑡), we replaced the letter 𝑙
with 𝑓 (𝑡), and we allow 𝑥 to take the value 𝑡 by removing the restriction 𝑥 ≠ 𝑡.
Challenge 26 Suppose function 𝑔 is continuous at 𝑡 and function 𝑓 is continuous at 𝑔(𝑡). Show
that their composition 𝑓 ◦ 𝑔 is continuous at 𝑡.

Recall from Challenge 24 that lim𝑥→𝑡 𝑓 (𝑥) = 𝑙 if and only if lim𝑥→𝑡+ 𝑓 (𝑥) = lim𝑥→𝑡− 𝑓 (𝑥) = 𝑙.
Since both are equivalent, we may take the statement lim𝑥→𝑡+ 𝑓 (𝑥) = lim𝑥→𝑡− 𝑓 (𝑥) = 𝑓 (𝑡) as the
definition of continuity. There are actually two statements: lim𝑥→𝑡+ 𝑓 (𝑥) = 𝑓 (𝑡) and lim𝑥→𝑡− 𝑓 (𝑥) =
𝑓 (𝑡). Combining the two statements into one, we have: a function 𝑓 is continuous at 𝑡 if for each
𝜖1 > 0 and for each 𝜖2 > 0, there is some 𝛿1(𝜖1) > 0 and some 𝛿2(𝜖2) > 0 such that for each
𝑥 ∈

(
𝑡 − 𝛿1(𝜖1), 𝑡 + 𝛿2(𝜖2)

)
, we have 𝑓 (𝑥) ∈

(
𝑓 (𝑡) − 𝜖1 , 𝑓 (𝑡) + 𝜖1

)
and 𝑓 (𝑥) ∈

(
𝑓 (𝑡) − 𝜖2 , 𝑓 (𝑡) + 𝜖2

)
.

Observe that this unfamiliar definition of continuity no longer appears as a statement about
closeness. It is a statement about open intervals: the first part about 𝜖1 > 0 and 𝜖2 > 0 specifies an
interval 𝐼𝑜 in the output axis (𝑦-axis) while the second part about 𝛿1(𝜖1) > 0 and some 𝛿2(𝜖2) > 0

14Hint: |ℎ(𝑥) − 𝑙| ≤ |ℎ(𝑥) − 𝑓 (𝑥)| + | 𝑓 (𝑥) − 𝑙| < |𝑔(𝑥) − 𝑓 (𝑥)| + 𝜖 ≤ |𝑔(𝑥) − 𝑙 + 𝑙 − 𝑓 (𝑥)| + 𝜖.
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specifies a corresponding interval 𝐼𝑖 in the input axis (𝑥-axis). In particular, each input in the
interval 𝐼𝑖 must map to the interval 𝐼𝑜 . As a shorthand, we will write 𝑓 (𝐼𝑖) to denote the set of
outputs 𝑓 (𝑥) for 𝑥 ∈ 𝐼𝑖 . With this notation, we wish to show that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 .
Theorem 31. Suppose a function 𝑓 satisfies the following: for each open interval 𝐼𝑜 containing
𝑓 (𝑡), there is a corresponding open interval 𝐼𝑖 containing 𝑡 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 . Then function 𝑓 is
continuous at 𝑡.

Proof. We want to show that a function 𝑓 satisfying the condition outlined is indeed continuous. Let
𝜖 > 0. Then

(
𝑓 (𝑡)−𝜖, 𝑓 (𝑡)+𝜖

)
is an interval containing 𝑓 (𝑡). Then there will be a corresponding open

interval 𝐼𝑖 := (𝑡 − 𝑎, 𝑡 + 𝑏) containing 𝑡, where 𝑎 and 𝑏 are positive constants. Take 𝛿(𝜖) = min(𝑎, 𝑏)
and observe that 𝐼 :=

(
𝑡−𝛿(𝜖), 𝑡+𝛿(𝜖)

)
⊂ 𝐼𝑖 . Therefore, 𝑓 (𝐼) ⊂ 𝐼𝑜 , in particular, for each |𝑥−𝑡| < 𝛿(𝜖),

we have | 𝑓 (𝑥) − 𝑓 (𝑡)| < 𝜖. We see that function 𝑓 is indeed continuous.

Challenge 27 Let 𝑓 be continuous at 𝑡. Show that for each open interval 𝐼𝑜 containing 𝑓 (𝑡), there
is a corresponding open interval 𝐼𝑖 containing 𝑡 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 .

Theorem 31 and Challenge 27 allows us to take the definition of continuity as follows.

Definition 32. A function 𝑓 is continuous at 𝑡 if each open interval 𝐼𝑜 containing 𝑓 (𝑡) has an open
interval 𝐼𝑖 containing 𝑡 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 .

Recall from Section 2.5 that completeness of the real numbers was necessary to ensure that
continuous functions would not skip over a point. This was because a hole could render a step
function to be continuous. We now verify that completeness does indeed make sure that continuous
functions do not skip over points.

Theorem 33 (Intermediate Value Theorem). If 𝑓 is a continuous function and 𝑎, 𝑏 are real numbers
such that 𝑓 (𝑎) ≤ 𝑓 (𝑏), then for each 𝑦 ∈

[
𝑓 (𝑎), 𝑓 (𝑏)

]
there is some 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑦.

Proof. If 𝑓 (𝑎) = 𝑓 (𝑏) then the statement is satisfied, so we may assume that 𝑓 (𝑎) < 𝑓 (𝑏). The idea
is as follows: we take the collection of points 𝑝 such that points to the left of 𝑝 take on values
𝑓 (𝑥) > 𝑦. Then the rightmost point 𝑥 of such collection should satisfy 𝑓 (𝑥) = 𝑦 because any point
to the right of 𝑥 will take on values 𝑓 (𝑥) > 𝑦.

Let 𝑆 be the set of 𝛼 ∈ [𝑎, 𝑏] such that 𝑓 (𝛼) ≤ 𝑦. Observe that 𝑆 contains the endpoint 𝑎 and
is thus a nonempty set of real numbers. Furthermore, because 𝑦 ≤ 𝑓 (𝑏) we see that the set 𝑆 is
bounded from above by 𝑏. By completeness, there is a least upper bound 𝑥 := sup 𝑆.

All that remains is to check that 𝑓 (𝑥) = 𝑦. We will do this by showing that neither 𝑓 (𝑥) < 𝑦 and
𝑓 (𝑥) > 𝑦 are possible. First, suppose that 𝑓 (𝑥) < 𝑦 and consider the open interval 𝐼𝑜 := (−∞, 𝑦).
Since 𝑓 is continuous at 𝑥, there is an open interval 𝐼𝑖 containing 𝑥 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 . Let 𝛽 ∈ 𝐼𝑖
such that 𝑥 ≤ 𝛽 ≤ 𝑏. Since 𝑓 (𝐼𝑖) ⊂ 𝑓 (𝐼𝑜), we see that 𝑓 (𝛽) < 𝑦 and so 𝛽 ∈ 𝑆. This contradicts the fact
that 𝑥 is an upper bound of 𝑆 and so 𝑓 (𝑥) ≮ 𝑦.

Next, suppose that 𝑓 (𝑥) > 𝑦. Once again, by continuity of function 𝑓 at 𝑥, there is an open
interval 𝐼𝑖 containing 𝑥 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 where 𝐼𝑜 := (𝑦,∞). Let 𝛼 ∈ 𝐼𝑖 such that 𝛼 < 𝑥. Since
[𝛼, 𝑥] ⊂ 𝐼𝑜 we see that 𝑓 ([𝛼, 𝑥]) ⊂ 𝑓 (𝐼𝑜). This means that 𝛼 is an upper bound of 𝑆, contradicting
the fact that 𝑥 = sup 𝑆. Therefore 𝑓 (𝑥) ≯ 𝑦 and the only possibility is that 𝑓 (𝑥) = 𝑦, as desired.

As continuous functions cannot skip over points, a continuous function must map an interval
into another.
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Corollary 34. If 𝑓 is a continuous function defined on an interval 𝐼, then 𝑓 (𝐼) is also an interval.

Proof. There is nothing to show if 𝑓 (𝐼) consists of a single element, so we will assume that 𝑓 (𝐼)
contains at least two points. How would we know if 𝑓 (𝐼) is not an interval? We would know that
𝑓 (𝐼) is not an interval if it has a hole. That is to say, 𝑓 (𝐼) is not an interval if there some point
𝑝 such that for 𝑢, 𝑣 ∈ 𝑓 (𝐼) with 𝑢 < 𝑝 < 𝑣, we see that 𝑝 ∉ 𝑓 (𝐼). This is equivalent to checking
that there exists 𝑢, 𝑣 ∈ 𝑓 (𝐼) with 𝑢 < 𝑣 such that [𝑢, 𝑣] ⊄ 𝑓 (𝐼). The negation of this statement (see
Challenge 19) is that 𝑓 (𝐼) is an interval if each 𝑢, 𝑣 ∈ 𝑓 (𝐼)with 𝑢 < 𝑣 satisfies [𝑢, 𝑣] ⊂ 𝑓 (𝐼). But this
is guaranteed from the Intermediate Value Theorem and so we are done.

Once we begin to talk about functions defined on intervals that are not (−∞,∞), the definition of
continuity must be modified very slightly to take into account the fact that the function is undefined
outside the interval.

Definition 35. A function 𝑓 defined on an interval 𝐼 is continuous at 𝑡 if each open interval 𝐼𝑜
containing 𝑓 (𝑡) has an open interval 𝐼𝑖 containing 𝑡 such that 𝑓 (𝐼𝑖 ∩ 𝐼) ⊂ 𝐼𝑜 .

Challenge 28 (Continuing Section 2.5) Define function 𝑓 on (−∞, 0) ∪ (0,∞) such that 𝑓 : 𝑥 ↦→ 0
if 𝑥 < 0 and 𝑓 : 𝑥 ↦→ 1 if 𝑥 > 0. Show that 𝑓 is continuous at each 𝑥 ∈ (−∞, 0) ∪ (0,∞). Define
function 𝑔 by 𝑔 : 𝑥 ↦→ 0 for 𝑥 ∈ (−∞, 0] and 𝑔 : 𝑥 ↦→ 1 for 𝑥 ∈ (0,∞). Show that 𝑔 is not continuous.

Returning to Corollary 34, a natural question to ask is whether a continuous function 𝑓 defined
on a finite interval can be unbounded, that is, have 𝑓 (𝐼) that is not a finite interval. If we define
𝑓 : 𝑥 ↦→ 1/𝑥 on the open interval (0, 1), then 𝑓 is differentiable with 𝑓 ((0, 1)) = (1,∞), which is
unbounded. Can we define a continuous function 𝑓 on a closed interval [𝑎, 𝑏] such that 𝑓 (𝐼) is
unbounded? This seems implausible since the function would need to: start from 𝑓 (𝑎) then go
infinitely high or infinitely low and then hit 𝑓 (𝑏)without skipping any points along the way.

So let us suppose that 𝑓 is a continuous function defined on a closed interval [𝑎, 𝑏]. As in
the proof of the Intermediate Value Theorem, let 𝑆 be the set of 𝛼 ∈ [𝑎, 𝑏] such that 𝑓 ([𝑎, 𝛼]) is
bounded. Observe that 𝑆 is a nonempty set (containing 𝑎) that is bounded from above (by 𝑏) and
so there is some 𝑥 := sup 𝑆. Let us first check to see if 𝑓 ([𝑎, 𝑥]) is bounded. Since function 𝑓 is
continuous, there is some open interval 𝐼𝑖 containing 𝑥 such that 𝑓 (𝐼𝑖) ⊂ 𝐼𝑜 where we will put
𝐼𝑜 := ( 𝑓 (𝑥) − 1, 𝑓 (𝑥) + 1) for definiteness. Let 𝛽 < 𝑥 be an element of interval 𝐼𝑖 so that 𝑓 ([𝑎, 𝛽]) is
bounded. But 𝑓 ([𝛽, 𝑥]) ⊂ 𝐼𝑜 and so the union 𝑓 ([𝑎, 𝑥]) is also bounded.

We check whether it is possible that 𝑥 < 𝑏. If 𝑥 < 𝑏, there is some 𝛾 ∈ 𝐼𝑖 such that 𝑥 < 𝛾 < 𝑏. But
then 𝑓 ([𝑥, 𝛾]) ⊂ 𝐼𝑜 and so 𝑓 ([𝑎, 𝛾]) is bounded. This contradicts the fact that 𝑥 is an upper bound
of set 𝑆. Therefore, 𝑥 = 𝑏 and we conclude that 𝑓 ([𝑎, 𝑏]) is bounded from above. Switching the
orientation of the 𝑦-axis shows that 𝑓 ([𝑎, 𝑏]) is bounded from below. We restate our result below.

Theorem 36 (Boundedness Theorem). If 𝑓 is a continuous function defined on a closed interval
[𝑎, 𝑏] then 𝑓 ([𝑎, 𝑏]) is bounded.

If 𝑓 ([𝑎, 𝑏]) is bounded, then there is some 𝑦 := sup 𝑓 ([𝑎, 𝑏]). A constant function will always
attain this least upper bound 𝑦, but does this hold in general? Our intuition suggest yes, for if
𝑓 ([𝑎, 𝑏]) is only able to attain some value at most 𝑦0 < 𝑦, then 𝑦 would not be able to be the
supremum of 𝑓 ([𝑎, 𝑏]). We now verify that this is indeed the case.
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Theorem 37 (Extreme Value Theorem). Let 𝑓 be a continuous function defined on a closed interval
𝐼 := [𝑎, 𝑏] and (by the Boundedness Theorem, we may) put 𝑚 := inf 𝑓 (𝐼) and 𝑀 := sup 𝑓 (𝐼). Then
there is some 𝛼, 𝛽 ∈ 𝐼 such that 𝑓 (𝛼) = 𝑚 and 𝑓 (𝛽) = 𝑀.

Proof. We first show that there is some 𝛽 ∈ 𝐼 such that 𝑓 (𝛽) = 𝑀. If not, then the function
1/[𝑀 − 𝑓 (𝑥)] is continuous on the interval 𝐼. As 𝑀 is the least upper bound of 𝑓 (𝐼), we see that for
each 𝜖 > 0, there is some 𝑥 ∈ 𝐼 such that 𝑀 − 𝑓 (𝑥) < 𝜖. This means that 1/[𝑀 − 𝑓 (𝑥)] > 1/𝜖. But
the function 1/𝜖 defined on (0,∞) is not bounded from above. Hence the function 1/[𝑀 − 𝑓 (𝑥)] is
also not bounded from above, contradicting the Boundedness Theorem. Changing the orientation
of the 𝑦-axis shows that there is some 𝛼 ∈ 𝐼 such that 𝑓 (𝛼) = 𝑚.

Thus a function defined on [𝑎, 𝑏] is guaranteed to attain its extremum. But as we saw with
the function 𝑥 ↦→ 1/𝑥 on the interval (0, 1], this is not the case once we lose at least one of the
endpoints. As we may change units by any constant multiplicative factor, working on an open
interval (𝑎, 𝑏) is like working with the entire set of real numbers (−∞,∞). This freedom allows us
to define continuous functions with values as large as we want. However, by adding in the end
points, the interval ironically becomes “smaller". There is something curious at work. Pursuing
these threads leads to the field of topology.

Inverse functions

As continuous functions map intervals into another, we can consider the especially nice case
where each point on an interval is mapped uniquely into a point in another interval.

Let 𝑓 be a function defined on an interval 𝐼. Function 𝑔 is an inverse function of 𝑓 if each 𝑥 ∈ 𝐼
satifies (𝑔 ◦ 𝑓 )(𝑥) = 𝑥 and each 𝑦 ∈ 𝑓 (𝐼) satifies ( 𝑓 ◦ 𝑔)(𝑦) = 𝑦. We previously saw in Section 3.4
that the exponential function is an inverse function of the logarithm function.
Challenge 29 Let function 𝑓 be defined on an interval 𝐼 with an inverse function 𝑔.

(a) Check that if 𝑓 (𝑎) = 𝑓 (𝑏), then 𝑎 = 𝑏. We say that function 𝑓 is injective. Conclude that each
𝑦 ∈ 𝑓 (𝐼) has a unique 𝑥 ∈ 𝐼 such that 𝑓 (𝑥) = 𝑦.

(b) Suppose ℎ is also an inverse function of 𝑓 . Show that 𝑔 = ℎ by checking that 𝑔(𝑦) = ℎ(𝑦) for
each 𝑦 ∈ 𝑓 (𝐼). Conclude that an inverse function is unique.

(c) Assume in addition that 𝑓 is a strictly increasing function, that is 𝑓 (𝑎) < 𝑓 (𝑏) for each 𝑎 < 𝑏
in the interval 𝐼. Show that 𝑔 is a strictly increasing function on 𝑓 (𝐼). Deduce that the
exponential function is a strictly increasing function.

(d) State and confirm the analogue of part (c) for strictly decreasing functions.
We check that the exponential function is continuous from the definition. We want to show

that lim𝑡→𝑦 exp(𝑡) = exp
(
𝑦
)

for each real number 𝑦. Let 𝜖 > 0; we wish to find some positive 𝛿(𝜖)
value such that for each 𝑡 satisfying |𝑡 − 𝑦| < 𝛿, we have | exp(𝑡) − exp

(
𝑦
)
| < 𝜖. In other words,

exp
(
𝑦
)
− 𝜖 < exp(𝑡) < exp

(
𝑦
)
+ 𝜖 whenever 𝑦 − 𝛿(𝜖) < 𝑡 < 𝑦 + 𝛿(𝜖).

To minimize confusion, let us define the intermediate variable log 𝑥 := 𝑦. The logarithm
function is a strictly increasing function and so log(𝑥 − 𝜖) < log 𝑥 < log(𝑥 + 𝜖).15 Take 𝛿(𝜖) :=
min

(
log(𝑥 + 𝜖) − log(𝑥), log(𝑥) − log(𝑥 − 𝜖)

)
. Then whenever 𝑦 − 𝛿(𝜖) < 𝑡 < 𝑦 + 𝛿(𝜖), we have the

15What if 𝑥 − 𝜖 ≤ 0 and so log(𝑥 − 𝜖) is undefined? No problem! We can always pretend that 𝜖 is small enough
(Challenge 18) and make the substitution 𝜖 ↦→ min(𝜖, 𝑥/2). The value 𝑥 here is fixed because log 𝑥 := 𝑦, where 𝑦 is fixed.



DRAFT
4.4. CONTINUOUS FUNCTIONS 73

following inequalities.

log(𝑥 − 𝜖) = 𝑦 −
(
log 𝑥 − log(𝑥 − 𝜖)

)
≤ 𝑦 − 𝛿(𝜖) < 𝑡

𝑡 < 𝑦 + 𝛿(𝜖) ≤ 𝑦 +
(
log(𝑥 + 𝜖) − log 𝑥

)
= log(𝑥 + 𝜖)

By Challenge 29, the exponential function is strictly increasing and so using 𝑥 = exp
(
𝑦
)

gives

exp
(
𝑦
)
− 𝜖 = (exp ◦ log)(𝑥 − 𝜖) < exp(𝑡) < (exp ◦ log)(𝑥 + 𝜖) = exp

(
𝑦
)
+ 𝜖

as desired.
We can also check that the exponential function is differentiable (simply assumed in Section 3.4).

Recall that the logarithm function is differentiable at each 𝑥 ∈ 𝐼 := (0,∞) with log′(𝑥) > 0. Put
𝑦 = log 𝑥 and let 𝛼 be nonzero. Since the exponential function is the inverse function of the
logarithm function, there is some nonzero 𝛼̄ such that 𝑦 + 𝛼 = log(𝑥 + 𝛼̄).

By construction, we have the following.

exp
(
𝑦 + 𝛼

)
− exp

(
𝑦
)

𝛼
=

𝑥 + 𝛼̄ − 𝑥
log(𝑥 + 𝛼̄) − log 𝑥

=
1[

log(𝑥 + 𝛼̄) − log(𝑥)
]
/𝛼̄

Because the exponential function is continuous, if |(𝑦+𝛼)−𝑦| → 0, then | exp
(
𝑦 + 𝛼

)
−exp

(
𝑦
)
| → 0.

Therefore if 𝛼→ 0, then 𝛼̄→ 0. We may apply the quotient rule of limits to get

lim
𝛼→0

exp
(
𝑦 + 𝛼

)
− exp

(
𝑦
)

𝛼
= lim

𝛼̄→0

1
[log(𝑥 + 𝛼̄) − log(𝑥)]/𝛼̄ =

lim𝛼̄→0 1
lim𝛼̄→0[log(𝑥 + 𝛼̄) − log(𝑥)]/𝛼̄

=
1

log′(𝑥) = 𝑥 = exp 𝑦.

We see that the exponential function is differentiable at each real number 𝑦, with

exp′(𝑦) = exp
(
𝑦
)
.

Challenge 30 Let 𝑓 be a strictly increasing continuous function defined on an open interval 𝐼
with the inverse function 𝑔.

(a) Show that the inverse function 𝑔 must also be continuous by repeating the argument for the
exponential function.

(b) Show that if 𝑓 is differentiable at 𝑥 ∈ 𝐼 with 𝑓 ′(𝑥) ≠ 0, then 𝑔 is differentiable at 𝑓 ′(𝑥)with

𝑔′
(
𝑓 (𝑥)

)
= 1/ 𝑓 ′(𝑥).

(c) Show that parts (a) and (b) continue to hold if continuous 𝑓 is assumed to be strictly decreasing.

The Mean Value Theorem
In Section 2.5 we saw that calculus breaks down if we allow motion without velocity. In other

words, if 𝑓 ′(𝑥) = 0 on an interval, then we absolutely need 𝑓 to be a constant on that interval. Let
us now verify that this is indeed the case.
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Now it is very difficult to visualize how a differentiable function 𝑓 with zero velocity could
be non constant. Indeed, the only counterexample seems to be step functions, but we know from
the Intermediate Value Theorem that step functions cannot be continuous. So instead of trying to
think about functions with zero velocity, let us study the behavior of continuous functions whose
behavior in the end point are fixed as a constant, but some motion is permitted in the middle.

Here is the simplest thing we could check. As long as 𝑓 has velocity between the endpoints,
can we say for certain that a point 𝑥 exist on the interval such that 𝑓 ′(𝑥) = 0? If not, we are at a
dead end, so this is something that a calculus skeptic might be interested in.

Suppose we have a continuous function 𝑓 defined on a closed interval [𝑎, 𝑏] such that the values
of 𝑓 are equal at the endpoints. Let us further assume that 𝑓 is differentiable between 𝑎 and 𝑏. If
𝑓 is a constant, then we are done, so let us assume 𝑓 is not a constant. We obtained a great result
called the Extreme Value Theorem that tells us that there is some 𝛼 ∈ [𝑎, 𝑏] and 𝛽 ∈ [𝑎, 𝑏] such that
𝑓 (𝛼) = inf 𝑓 ([𝑎, 𝑏]) and 𝑓 (𝛽) = sup 𝑓 ([𝑎, 𝑏]). Since 𝑓 is not a constant, at least one 𝑓 (𝛼) and 𝑓 (𝛽) are
distinct from 𝑓 (𝑎). Without loss of generality, suppose 𝑓 (𝛼) > 𝑓 (𝑎). Then 𝑓 (𝛼) is a maximum and
by Challenge 25, 𝑓 ′(𝛼) = 0.

Let us go through the argument once again. Since 𝑓 ′(𝛼) is differentiable, the following limits
from above and below exist and are equal.

lim
𝑥→𝛼+

𝑓 (𝛼) − 𝑓 (𝑥)
𝛼 − 𝑥 = lim

𝑦→𝛼−

𝑓 (𝛼) − 𝑓 (𝑦)
𝛼 − 𝑦 (4.2)

Since 𝑓 (𝛼) is a maximum, the numerators of the above satisfies 𝑓 (𝛼)− 𝑓 (𝑥) > 0 and 𝑓 (𝛼)− 𝑓 (𝑦) > 0.
But 𝛼 − 𝑥 < 0 and 𝛼 − 𝑦 > 0 and since limits preserve inequalities, we have

lim
𝑥→𝛼+

𝑓 (𝛼) − 𝑓 (𝑥)
𝛼 − 𝑥 ≤ 0 lim

𝑦→𝛼−

𝑓 (𝛼) − 𝑓 (𝑦)
𝛼 − 𝑦 ≥ 0.

Equation 4.2 is satisfied only when

lim
𝑥→𝛼+

𝑓 (𝛼) − 𝑓 (𝑥)
𝛼 − 𝑥 = lim

𝑦→𝛼−

𝑓 (𝛼) − 𝑓 (𝑦)
𝛼 − 𝑦 = 0. (4.3)

Since 𝑓 is differentiable at 𝛼, we conclude that 𝑓 ′(𝛼) = 0.
This result, which we restate below, was first obtained (for polynomials) by Michel Rolle during

his years as a calculus skeptic.

Theorem 38 (Rolle’s Theorem). Let 𝑓 be a continuous function defined on the closed interval [𝑎, 𝑏]
such that 𝑓 (𝑎) = 𝑓 (𝑏). Furthermore, suppose 𝑓 is differentiable on (𝑎, 𝑏). Then there is some point
𝛼 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝛼) = 0.

Very good. The next step towards showing that 𝑓 ′ = 0 =⇒ 𝑓 = 𝑐 is that each value of 𝑓
must take a certain value (hopefully the endpoints). In fact, a general statement about continuous
functions taking a certain value can be made with no reference to derivatives.

Proposition 39. If 𝑓 is a continuous function defined on [0, 1] with 𝑓 ([0, 1]) = [0, 1], then there is
some 𝛼 ∈ [0, 1] such that 𝑓 (𝛼) = 𝛼. Such a point 𝛼 is called a fixed point.
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Proof. The proof is very sneaky: just like we wish to obtain a result about constant functions by
not looking at constant functions, we will consider a different function 𝑔. Let 𝑔 : 𝑥 ↦→ 𝑥 − 𝑓 (𝑥);
we will show that there is some 𝛼 such that 𝑔(𝛼) = 0. If 𝑔 is zero at the endpoints, we are done.
Suppose 𝑔(0) ≠ 0 and 𝑔(1) ≠ 0. Then 𝑓 (0) > 0 and 𝑓 (1) < 1. Therefore, 𝑔(0) = 0 − 𝑓 (0) < 0 and
𝑔(1) = 1 − 𝑓 (1) > 0. By the Intermediate Value Theorem, there is some 𝛼 such that 𝑔(𝛼) = 0.

The average velocity of an object during some time interval 𝑡 is the displacement of the object
divided by the time interval 𝑡. For example, a car that moved 100 km to the right in 1 hour, then
the car has an average velocity of 100km/hr. On the other hand, if the car had zero displacement,
then no matter the motion, the car has an average velocity of 0km/hr. So this is it! If we can show
that the velocity of the car always attains an average velocity of 0 km/hr, then it must have had
zero displacement all the time and the car must have been stationary.

We will first show that the average velocity is guaranteed to be attained.

Theorem 40 (Mean Value Theorem). Let 𝑓 be a continuous function defined on the closed interval
[𝑎, 𝑏] that is differentiable on (𝑎, 𝑏). Then there is some point 𝛼 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝛼) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Proof. As before, we consider a different function ℎ; the derivative of ℎ will measure the difference
between 𝑓 ′(𝑥) and [ 𝑓 (𝑏) − 𝑓 (𝑎)]/(𝑏 − 𝑎):

ℎ′(𝑥) = 𝑓 ′(𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

The simplest candidate is

ℎ(𝑥) := 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 𝑥. (4.4)

Let’s check the behavior of ℎ at the endpoints: how do they differ?

ℎ(𝑏) − ℎ(𝑎) =
[
𝑓 (𝑏) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 𝑏

]
−

[
𝑓 (𝑎) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 𝑎

]
= 𝑓 (𝑏) − 𝑓 (𝑎) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 (𝑏 − 𝑎) = 0

So ℎ is a differentiable function fixed at the endpoints. But from Rolle’s Theorem, we already know
that such a function must have vanishing derivative at some point 𝛼 ∈ (𝑎, 𝑏). Therefore

0 = 𝑔′(𝛼) = 𝑓 ′(𝛼) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Corollary 41. If 𝑓 ′ is zero on (𝑎, 𝑏), then 𝑓 is a constant function on (𝑎, 𝑏).
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Proof. For each (time) interval [𝑡𝑖 , 𝑡 𝑓 ] ⊂ (𝑎, 𝑏), the Mean Value Theorem guarantees that there is
some 𝑡 ∈ [𝑡𝑖 , 𝑡 𝑓 ] such that

0 = 𝑓 ′(𝑡) =
𝑓 (𝑡 𝑓 ) − 𝑓 (𝑡𝑖)
𝑡 𝑓 − 𝑡𝑖

.

So 𝑓 (𝑡 𝑓 ) = 𝑓 (𝑡𝑖). Since our choice of final time 𝑡 𝑓 and initial time 𝑡𝑖 were arbitrary, 𝑓 is a constant.

The following are a few results we can obtain easily from our work.

Corollary 42. If 𝑓 ′ = 𝑔′ on (𝑎, 𝑏), then 𝑓 − 𝑔 is a constant.

Proof. Put ℎ : 𝑥 ↦→ 𝑓 (𝑥)− 𝑔(𝑥) and observe that ℎ′ : 𝑥 ↦→ 0 on (𝑎, 𝑏). By Corollary 41, ℎ is a constant
function on (𝑎, 𝑏).

Corollary 43. Each antiderivative of 𝑓 differs by a constant.

Proof. By definition, antiderivatives of a function must have the same derivatives, so they can only
differ by a constant.

Challenge 31 Let 𝑓 and 𝑔 be continuous functions on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
(a) If 𝑓 ′(𝑥) > 0 for each 𝑥 ∈ (𝑎, 𝑏), show that 𝑓 is strictly increasing.
(b) If 𝑓 ′(𝑥) ≥ 0 for each 𝑥 ∈ (𝑎, 𝑏), show that 𝑓 is increasing.
(c) If 𝑓 ′(𝑥) < 0 for each 𝑥 ∈ (𝑎, 𝑏), show that 𝑓 is strictly decreasing.
(d) If 𝑓 ′(𝑥) ≤ 0 for each 𝑥 ∈ (𝑎, 𝑏), show that 𝑓 is decreasing.
(e) If 𝑓 ′(𝑥) ≤ 𝑔′(𝑥) on [𝑎, 𝑏], use part (b) to show that 𝑓 (𝑥) − 𝑓 (𝑎) ≤ 𝑔(𝑥) − 𝑔(𝑎) for each 𝑥 ∈ [𝑎, 𝑏].
(f) If 𝛼 ≤ 𝑓 ′(𝑥) ≤ 𝛽 on [𝑎, 𝑏], use part (e) to show that 𝛼(𝑥 − 𝑎) ≤ 𝑓 (𝑥) − 𝑓 (𝑎) ≤ 𝛽(𝑥 − 𝑎) for each

𝑥 ∈ [𝑎, 𝑏]. Obtain the mean value inequality: 𝛼 ≤ 𝑓 (𝑥)− 𝑓 (𝑎)
𝑥−𝑎 ≤ 𝛽.

Let us take a second look at equality of the Mean Value Theorem:

𝑓 ′(𝛼)
1 =

𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

This is really a statement about two functions, for if we let 𝑔 : 𝑥 ↦→ 𝑥, because 𝑔′(𝑥) = 1 we have

𝑓 ′(𝛼)
𝑔′(𝛼) =

𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) .

Will such an equality hold in general?
Suppose 𝑓 and 𝑔 are continuous functions defined on the closed interval [𝑎, 𝑏] that are differ-

entiable on (𝑎, 𝑏) with 𝑔′(𝑥) ≠ 0 on (𝑎, 𝑏). Simply take the definition of the difference function ℎ
from Equation 4.4 and make the change variables 𝑎 ↦→ 𝑔(𝑎), 𝑏 ↦→ 𝑔(𝑏), and 𝑥 ↦→ 𝑔(𝑥) to obtain the
function ℎ̃:

ℎ(𝑥) := 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 𝑥 =⇒ ℎ̃(𝑥) := 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑔(𝑏) − 𝑔(𝑎) 𝑔(𝑥).

The function ℎ̃ is undefined if 𝑔′(𝑥) = 0 anywhere on (𝑎, 𝑏) or if 𝑔(𝑏) = 𝑔(𝑎). The former is ruled out
by assumption and the second is impossible by the Mean Value Theorem.16 By the sum, product,

16If 𝑔(𝑏) − 𝑔(𝑎) = 0, the Mean Value Theorem guarantees there is some 𝛼 ∈ (𝑎, 𝑏) such that 𝑔′(𝛼) = 0.
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quotient rule for limits and derivatives, function ℎ̃ is continuous on [𝑎, 𝑏] and differentiable on
(𝑎, 𝑏). Furthermore, the value of function ℎ̃ equal at the endpoints:

ℎ̃(𝑎) − ℎ̃(𝑏) =
[
𝑓 (𝑎) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑔(𝑏) − 𝑔(𝑎) 𝑔(𝑎)
]
−

[
𝑓 (𝑏) − 𝑓 (𝑏) − 𝑓 (𝑎)

𝑔(𝑏) − 𝑔(𝑎) 𝑔(𝑏)
]

= 𝑓 (𝑎) − 𝑓 (𝑏) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) 𝑔(𝑎) +

𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) 𝑔(𝑏)

= 𝑓 (𝑎) − 𝑓 (𝑏) + 𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) [𝑔(𝑏) − 𝑔(𝑎)] = 𝑓 (𝑎) − 𝑓 (𝑏) + 𝑓 (𝑏) − 𝑓 (𝑎) = 0.

By Rolle’s Theorem, there is some 𝛼 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝛼) − 𝑓 (𝑏)− 𝑓 (𝑎)
𝑔(𝑏)−𝑔(𝑎) 𝑔

′(𝛼) = 0; that is

𝑓 ′(𝛼)
𝑔′(𝛼) =

𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) .

This result is called the Generalized Mean Value Theorem.

Theorem 44 (Generalized Mean Value Theorem). Let 𝑓 and 𝑔 be continuous function defined on
the interval [𝑎, 𝑏] that are differentiable on (𝑎, 𝑏). If 𝑔′(𝑥) ≠ 0 for each 𝑥 ∈ (𝑎, 𝑏), then there is some
𝛼 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝛼)
𝑔′(𝛼) =

𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎) .

The Generalized Mean Value Theorem is a result on a quotient of differentiable functions. We
know of another result on a quotient of differentiable functions: L’Hospital’s rule (Theorem 28).
Let us use the Generalized Mean Value Theorem to obtain a slight variation on L’Hospital’s Rule.
First, here is a variation on the symbol lim𝑥→∞ 𝑓 (𝑥) = 𝑙 for when 𝑓 grows boundlessly.

Definition 45. The symbol lim𝑥→∞ 𝑓 (𝑥) = ∞ means: for each positive integer 𝑚 (analogue of 𝜖)
there is some positive integer 𝑛 (analogue of 𝛿) such that for each 𝑥 > 𝑛 we have 𝑓 (𝑥) > 𝑚.

Theorem 46 (L’Hospital’s Rule). Let 𝑓 and 𝑔 be differentiable on (𝑎,∞)with 𝑔(𝑥) ≠ 0 and 𝑔′(𝑥) ≠ 0
for each 𝑥 > 𝑎. If lim𝑥→∞ 𝑓 (𝑥) = lim𝑥→∞ 𝑔(𝑥) = ∞ and the limit lim𝑥→∞

𝑓 ′(𝑥)
𝑔′(𝑥) exists then

lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→∞

𝑓 ′(𝑥)
𝑔′(𝑥) .

Proof. Let 𝜖 > 0 and let 𝑙 := lim𝑥→∞
𝑓 ′(𝑥)
𝑔′(𝑥) . By definition there is some positive integer 𝑛 such that

for each 𝑥 > 𝑛 we have ���� 𝑓 ′(𝑥)𝑔′(𝑥) − 𝑙
���� < 𝜖. (4.5)

Observe that 𝑔(𝑥) ≠ 𝑔(𝑛) because if 𝑔(𝑥) = 𝑔(𝑛) then Rolle’s Theorem guarantees some 𝛼 ∈ (𝑛, 𝑥)
such that 𝑔′(𝛼) = 0, which is forbidden by assumption. Applying the Generalized Mean Value
Theorem to the interval [𝑛, 𝑥] tells us that there is some 𝛽 ∈ (𝑛, 𝑥) such that

𝑓 (𝑥) − 𝑓 (𝑛)
𝑔(𝑥) − 𝑔(𝑛) =

𝑓 ′(𝛽)
𝑔′(𝛽) .
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Inequality 4.5 holds for each 𝑥 > 𝑛 and in particular 𝑥 = 𝛽. Therefore���� 𝑓 (𝑥) − 𝑓 (𝑛)𝑔(𝑥) − 𝑔(𝑛) − 𝑙
���� = ���� 𝑓 ′(𝛽)𝑔′(𝛽) − 𝑙

���� < 𝜖. (4.6)

It is sufficient to check that ���� 𝑓 (𝑥) − 𝑓 (𝑛)𝑔(𝑥) − 𝑔(𝑛) −
𝑓 (𝑥)
𝑔(𝑥)

���� < 𝜖

because then we can use the triangle inequality and Inequality 4.6 to conclude that���� 𝑓 (𝑥)𝑔(𝑥) − 𝑙
���� ≤ ���� 𝑓 (𝑥)𝑔(𝑥) +

𝑓 (𝑥) − 𝑓 (𝑛)
𝑔(𝑥) − 𝑔(𝑛)

���� + ���� 𝑓 (𝑥) − 𝑓 (𝑛)𝑔(𝑥) − 𝑔(𝑛) − 𝑙
���� < 𝜖 + 𝜖 = 2𝜖.

Multiplying and dividing the term 𝑓 (𝑥)− 𝑓 (𝑛)
𝑔(𝑥)−𝑔(𝑛) by 𝑔(𝑥) gives

𝑓 (𝑥) − 𝑓 (𝑛)
𝑔(𝑥) − 𝑔(𝑛) =

[
𝑓 (𝑥)
𝑔(𝑥) −

𝑓 (𝑛)
𝑔(𝑥)

]
/
[
1 − 𝑔(𝑛)

𝑔(𝑥)

]
.

Since lim𝑥→∞ 𝑓 (𝑥) = ∞ and lim𝑥→∞ 𝑔(𝑥) = ∞ the values of 𝑓 (𝑥) and 𝑔(𝑥) grow higher without
bounds. This means that the quotients 𝑓 (𝑛)/𝑔(𝑥) and 𝑔(𝑛)/𝑔(𝑥) can be made as close to zero as
we wish by taking sufficiently large values of 𝑥. Thus for sufficiently large 𝑥 the following must
always hold, as desired. ���� 𝑓 (𝑥) − 𝑓 (𝑛)𝑔(𝑥) − 𝑔(𝑛) −

𝑓 (𝑥)
𝑔(𝑥)

���� < 𝜖

As a result of L’Hospital’s rule we may conclude that 𝑒𝑥 grows faster than 𝑥𝑘 for each positive
integer 𝑘. Indeed lim𝑥→∞ 𝑘!/𝑒𝑥 = 𝑘! lim𝑥→∞ 1/𝑒𝑥 = 0 and by L’Hospital’s rule

0 = lim
𝑥→∞
[𝑘 · (𝑘 − 1) · · · (2)]𝑥

𝑒𝑥
= lim
𝑥→∞
[𝑘 · (𝑘 − 1) · · · (3)]𝑥2

𝑒𝑥
= · · · = lim

𝑥→∞
𝑘𝑥𝑘−1

𝑒𝑥
= lim
𝑥→∞

𝑥𝑘

𝑒𝑥
.

In fact, we see that 𝑒𝑥 grows faster than 𝑥𝑎 for each real 𝑎 because if we take 𝑘 to be any positive
integer greater than 𝑎, then lim𝑥→∞ |𝑥𝑎/𝑒𝑥| ≤ lim𝑥→∞ 𝑥𝑘/𝑒𝑥 = 0. Using the sum rule for limits
(adapted to lim𝑥→∞) shows that if 𝑃 is a polynomial on the variable 𝑥, then lim𝑥→∞ 𝑃

𝑒𝑥 = 0.
As a slight variation, we can introduce 𝜙𝑖 := 𝑥−𝑖 for each positive integer 𝑖 to obtain the

following.

lim
𝑥→0

𝑒−1/𝑥 𝑖

𝑥𝑘
= lim

𝜙𝑖→∞

𝜙𝑛/𝑖
𝑖

𝑒𝜙𝑖
= 0 (4.7)

Challenge 32 Define the function 𝑓 by

𝑓 : 𝑥 ↦→
{

0 𝑥 = 0,
𝑒−1/𝑥2

𝑥 ≠ 0.

(a) Use Equation 4.7 to check that 𝑓 is differentiable at 0 with 𝑓 ′(0) = 0.
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(b) By the chain rule, 𝑓 is differentiable whenever 𝑥 ≠ 0. Calculate 𝑓 ′(𝑥) for nonzero 𝑥.
(c) Use the product rule to calculate 𝑓 ′′(𝑥) for nonzero 𝑥.
(d) Use the well-ordering principle to show that for each natural number 𝑗, if 𝑥 ≠ 0 then 𝑓 (𝑗)(𝑥) =

𝑃𝑗𝑒
−1/𝑥2 where 𝑃𝑗 is some polynomial on the variable 𝑦 := 1/𝑥. By parts (b) and (c), 𝑃1 = 2𝑦3

and 𝑃2 = −6𝑦4 + 2𝑦3.
(e) If 𝑥 < 0 then −1/𝑥 > −1/𝑥2. Check that if 𝑥 ∈ (0, 1) then −1/𝑥 > −1/𝑥2. Conclude that if

𝑥 < 1 is nonzero, then
��𝑒−1/𝑥/𝑥𝑛

�� > ���𝑒−1/𝑥2/𝑥𝑛
���.

(f) Use the well-ordering principle and the fact that 𝑒𝑦 grows faster than any polynomial in 𝑦 to
show that for each natural number 𝑗, the derivative 𝑓 (𝑗)(0) exists with 𝑓 (𝑗)(0) = 0. Observe
that part (a) is the case when 𝑗 = 1.

Function 𝑓 defined in Challenge 32 can be differentiated as many times as we wish (and is thus
called infinitely differentiable) and so we can create Taylor polynomials of 𝑓 for any degree 𝑘.
However, each Taylor polynomials of 𝑓 at 0 will vanish, no matter how high the degree. Hence the
Taylor series of 𝑓 at 0 also vanishes.
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Dynamics

5.1 Forces and Energy

Force
The two key concepts in calculus are that of derivatives and integrals. We were able to obtain

each concept by examining the ideas behind that of velocities and displacements, respectively. So
far, we have taken the motion of objects, their velocities and displacements as a given. We will now
go further and examine what causes objects to have their velocities and displacements.

To turn a stationary object into one in motion or vice versa, we will need to apply some sort
of force. Anyone who has gone up a ski piste using a ski lift knows that force is not proportional
to velocity, but acceleration. The resistance to acceleration given a force is known as mass, and
so 𝐹 = 𝑚𝑎, where 𝐹 is the (total) force acting on our object of study, 𝑚 is the mass of the object,
and 𝑎 is acceleration of the object. This is Newton’s second law, and it is not to be taken as the
definition of force, but rather as a succinct summarization of observations and experiences. This
law is in fact incorrect, but a very good approximation in our ordinary lives to a more fundamental
law called Schrödinger’s equation from quantum mechanics. Notice that force has the dimension
Mass × Length × Time−2. Force is measured in newtons N, where 1 N is defined to be 1 kg·m·s−2.

Since acceleration is a second derivative of position, Newton’s second law is an example of a
differential equation, an equation containing derivative(s) of unknown function(s). Many physical
systems are modeled using differential equations. In the context of classical mechanics, we solve
differential equations for the unknown function which models the dynamics of the system, that is,
how the system changes over time.

Work and energy

Two natural question arise after studying velocities and displacements. (1) How much effort
must we exert in order to get an object to attain a certain velocity? (2) How much effort must we
exert in order to displace an object by a certain distance? For both questions, we will need the
object to have moved, for we cannot calculate nonzero velocities or displacements without any
movement. Then, to calculate the total effort exerted, we accumulate the force we applied at each
location the object was in, until our desired velocity or displacement was attained. The work done

81
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𝑊 by a force 𝐹 from position 𝑥𝑖 to 𝑥 𝑓 on a line is the definite integral 𝑊 :=
∫ 𝑥 𝑓

𝑥𝑖
𝐹(𝑥) 𝑑𝑥. The “total

effort we exert" is quantified by work done, and as we might expect, involves an integral. The
dimension of work done is Force × Length, that is, Mass × Length2 × Time−2.

Let us tackle the first question: how much work must we do to get an object of mass 𝑚 to
some velocity 𝑣? Immediately by dimensional analysis, we see that the answer must take the form
𝑐 · 𝑚𝑣2 for some constant 𝑐. We will assign the constant 𝑐 by considering the simplest case. The
simplest case we can imagine is applying a constant force 𝐹 to our object. Then the total work
done is 𝐹 · (𝑥 𝑓 − 𝑥𝑖), where 𝑥𝑖 is the initial position of our object and 𝑥 𝑓 is the final position of our
object. We cannot assume that the object’s velocity during our hard work is constant, because we
want the velocity to change. However, the next simplest thing to assume is that the object goes
from a velocity of 0 and steadily increases to the velocity 𝑣. In other words, the object has constant
acceleration 𝑎. Then the displacement is the average velocity of the object 𝑣−0

2 multiplied by the
total time 𝑡 we worked on the object. The constant acceleration 𝑎 is given by the total gain in velocity
divided by the time it took to reach that velocity: 𝑣/𝑡. Applying Newton’s second law gives

work needed = 𝐹 · (𝑥 𝑓 − 𝑥𝑖) = 𝑚𝑎 ·
(
𝑣 − 0

2 · 𝑡
)
= 𝑚

𝑣

𝑡
·
(
𝑣

2 · 𝑡
)
=

1
2𝑚𝑣

2

and so the dimensionless constant we wanted was 1/2. The quantity 1
2𝑚𝑣

2 is called the kinetic
energy of an object, and is denoted by the symbol 𝐾. The kinetic energy is often written slightly
differently using momentum. The (linear) momentum 𝑝 of an object is given by 𝑚𝑣. It tells us how
quickly we should get away from the object’s path. Using this notation, 𝐾 =

𝑝2

2𝑚 .
Next we turn to the second question: how much work must we do to get an object from point

𝑜 to point 𝑟? Let us consider an example: suppose we want to lift a box from the floor straight
up. Then we must work against the force of gravity. The effort we need to exert will be easier on
the moon compared to the earth, so our answer will have to depend on the force we are working
against to lift up our box. Therefore,

work needed =

∫ 𝑟

𝑜

−𝐹(𝑥) 𝑑𝑥,

where we have a minus sign because we must apply force to counteract external forces. This quantity
is called the potential energy of an object moving along a line. The location 𝑜 is called the reference
point or reference position. That the potential energy of an object depends on its reference point
might be unsettling, but it is really not. If we want to determine an elevation of a location, we need
to establish a reference point: say the ground level, or the sea level, etc, but this does not worry us,
as long as we are in agreement on what the reference point is. The potential energy of an object is
denoted by the symbol 𝑉 .

There is however, one subtlety. The potential energy is the work we need to do to displace an
object from point 𝑜 to point 𝑟. There are actually an infinite number of ways to do this. The normal
way to lift a box from the ground to a height 𝑟 is straight up. However, if we lifted the box up
halfway to a height of 𝑟/2, then returned the box to the ground, then brought the box up to height
𝑟, the final displacement of the box is still 𝑟. A force 𝐹 is conservative if a potential energy can be
defined unambiguously no matter how weird we decide to move the object. More precisely, force 𝐹
is conservative if the integral

∫ 𝑟

𝑜
−𝐹(𝑥) 𝑑𝑥 is defined unambiguously. All forces we will encounter

in this book are conservative. An example of a force that is nonconservative is frictional force. If
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we are moving an object against frictional force, then the work we need to do will increase with
the number of backtracks we take.

If force 𝐹 is conservative so that𝑉(𝑥) :=
∫ 𝑥

𝑜
−𝐹(𝛼) 𝑑𝛼 is unambiguous, then by the Fundamental

Theorem of Calculus, d𝑉
d𝑥 = −𝐹(𝑥) + 𝐹(𝑜). Since we are free to choose our reference point, we

choose our reference point such that 𝐹(𝑜) = 0. Once again, this is analogous to talking about
an elevation of a location. Technically we need to specify what our reference elevation is, but a
natural reference point is always implicitly used, and so we may talk about an elevation without
ambiguity. Hence, even though the elevation of a location technically does not make sense, we have
no problem ignoring this problem in practice. Similarly, even though it may not make sense to talk
about the potential energy of an object, we can do so in practice. By defining a point of reference 𝑜
with 𝐹(𝑜) = 0 for a conservative force, we have

𝐹(𝑥) = −d𝑉
d𝑥 .

The mechanical energy, or total energy, of an object is defined to the sum of the object’s kinetic
and potential energy 𝐾 + 𝑉 . As long as we are only dealing with conservative forces, the total
energy of an object remains the same, and we say that energy is conserved.

Theorem 47 (Conservation of Energy). Suppose we have an object of mass 𝑚 confined to move
along a line. If only conservative forces are at play, then mechanical energy is conserved.

Proof. The notation ¤□ for a function □ means d
d𝑡□. The symbol ¤𝑥 denotes the velocity of our object

(the rate of change of the position 𝑥 of our object with respect to time). Multiplying ¤𝑥 into both
sides of Newton’s second law gives 𝐹(𝑥) ¤𝑥 = 𝑚 ¥𝑥 ¤𝑥. Since 𝐹 is conservative, 𝐹(𝑥) = −d𝑉

d𝑥 and so by
the chain rule,

0 = 𝑚 ¥𝑥 ¤𝑥 + d𝑉(𝑥)
d𝑥

¤𝑥 =
d
d𝑡

(
𝑚
¤𝑥
2

2
+𝑉(𝑥)

)
=

d
d𝑡 (𝐾 +𝑉) .

Notice that d
d𝑡𝑉(𝑥) = d𝑉

d𝑥 ¤𝑥 and not d𝑉
d𝑡 , because 𝑥 here is used to denote the position function.

Simple harmonic oscillator
The simplest nontrivial force we can imagine is a force 𝐹(𝑥) := 𝑐𝑥 for some constant 𝑐. We can

(approximately) realize such a force in a spring and mass system, as shown in Figure 5.1, where
the longer we pull on the mass, the spring exerts a force proportional to the displacement of pull,
which wants to restore the mass back to the resting point. We choose the origin of the 𝑥-axis to be
the resting point of our mass. The assumptions are that we are not pulling too much to damage
the spring, and that no other forces (such as gravity, friction, air resistance, etc) are working on our
system. Such a system is called the simple harmonic oscillator, where the only force 𝐹 is defined
by 𝐹 : 𝑥 ↦→ −𝑘𝑥, in which 𝑘 is the spring constant. This force is called Hooke’s law. The spring
constant 𝑘 is a property of the spring which dictates the strength of its pull. Notice the minus sign:
the spring is working against us, not for us, as we displace the attached mass.

We could apply Newton’s second law 𝐹 = 𝑚𝑎 to get the equation 𝑚𝑎 = −𝑘𝑥 and solve for 𝑥 to
find out the oscillator’s motion. Instead, let us examine the system’s energy. Since 𝐹(0) = 0, we set
the reference point at the origin. At a displacement of 𝑟, the potential energy 𝑉 of our system is

𝑉 =

∫ 𝑟

𝑜

−𝐹(𝑥) 𝑑𝑥 =

∫ 𝑟

0
𝑘𝑥 𝑑𝑥 =

1
2 𝑘𝑟

2.
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𝑥
0

𝑚

𝑥
0
𝑟

𝑚

F

Figure 5.1: A mass and spring system at rest and displaced by 𝑟. (By Izaak Neutelings at tikz.net)

Therefore, the total energy 𝐸 of our mass and spring system is given by

𝐸 := 𝐾 +𝑉 =
𝑝2

2𝑚 +
1
2 𝑘𝑥

2.

By conservation of energy, the quantity 𝐸 is conserved for all time and is thus a constant.
A squared term (with some constant) plus a squared term (with other constant) equals another

constant. Where have we seen something like that before? To make this more explicit, let us divide
both sides by the nonzero constant 𝐸 to get 𝑥2

2𝐸/𝑘 +
𝑝2

2𝑚𝐸 = 1.1 Setting 𝑎2 := 2𝐸/𝑘 and 𝑏2 := 2𝑚𝐸 gives
us an equation of an ellipse!

𝑥2

𝑎2 +
𝑝2

𝑏2 = 1

Figure 5.2 shows our ellipse with the 𝑥-axis representing position and the 𝑦-axis representing
momentum. When we represent a system in terms of its position and momentum, as we are doing
now, we are working in phase space.

position

momentum
𝑎

−𝑎
𝑏−𝑏

Figure 5.2: Our simple harmonic oscillator has an elliptical trajectory in phase space.

Phase space
Let us try to get some intuition about phase space. Consider Figure 5.3, where an object has

been displaced from position 𝑥𝑖 to 𝑥 𝑓 . We say that our object has undergone a (spatial) translation.
What caused the the object to undergo spatial translation? Momentum 𝑝 was applied to our object.
We say that momentum generates translation.

Now let us add time. The time axis will work just the same as it did in calculus: there is no
preferred sense of direction (just like left or right are equally valid), we can “move" through it just

1We have used the fact that 𝑏
1/𝑎 = 𝑎𝑏.

tikz.net
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momentum

position
𝑥𝑖 𝑥 𝑓

𝑝

Figure 5.3: Momentum 𝑝 is applied to an object, displacing it from 𝑥𝑖 to 𝑥 𝑓 .

like any spatial dimension. Suppose we added energy to our oscillator and we graphed the system
in phase space, as in the right of Figure 5.4. What is going on there?

momentum

position

time

momentum

position

time

Figure 5.4: The phase space of an oscillator and another with energy being added.

Let us review the simpler case of momentum being added to the object (Figure 5.3). Initially,
the object is stationary, with no motion, at position 𝑥𝑖 . Since position 𝑥𝑖 is simply a label, we are
free to assign any numerical value: it could be the origin, or not. Now we apply momentum to
the object, and the object is translated to position 𝑥 𝑓 . Once again, the position 𝑥 𝑓 is simply a label,
we are free to assign any numerical value. Suppose we define the origin to be position 𝑥 𝑓 . Then
𝑥 𝑓 = 0. However, 𝑥𝑖 can no longer be the origin. It can be some positive number or negative number
depending on our choice of left/right, but it cannot be zero. We therefore conclude that spatial
translation has occurred, and it was caused by momentum. We say that momentum generates
translation.

Now we return to the case of adding energy to our oscillator (Figure 5.4). Because time is
simply a coordinate (like position), we can assign any time to be the origin. In particular, by
energy conservation, as long as no energy is added or removed, the diagram in our phase space
will continue to be the same. So we could assign the time of zero to any of them and no one will
be the wiser (left diagram in Figure 5.4). Now suppose we add in some energy. Time is an axis
like any other and we can define the origin to be anywhere we want. So suppose we define the
time to be 0 right after energy is added to the oscillator. Now the oscillator in the previous state
with less energy has a different diagram from the new one and cannot be said to be at time zero:
it could be positive or negative depending on our choice of direction, but it is not zero. We see
that time translation has occurred, and it was caused by energy. We say that energy generates time
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translation.
In the context of phase space, we call the total energy of a system the Hamiltonian and denote

it by the symbol 𝐻. Thus 𝐻(𝑥, 𝑝) := 𝑝2

2𝑚 +𝑉(𝑥) for the potential energy 𝑉 of the system.

5.2 Vectors and Matrices

Vectors

We now return to the very beginning and ask ourselves again, what is 1 + 1? The answer is
still 2, and once again, we will insist that these numbers mean something. To each number 1, we
attach the meaning of 1 apple and 1 orange, respectively. We now ask again, what is 1 apple plus
1 orange?

Our position at the beginning of the book was that this question involves quantities that cannot
be matched, and therefore, it is a sum which cannot be resolved. This led to the idea of dimensional
analysis. Yet there is another answer that is just as reasonable. 1 apple plus 1 orange is 2 fruits! Let
us see where this takes us.

We begin with most important question: why? Why are we trying to sum different fruits? An
obvious application is to make a fruit salad or a fruit juice or a platter of fruits. Let us suppose we
want to create a fruit salad.

Although it is convenient to clump things together under a bigger label (in this case, “fruits"),
we have the additional complexity of having to keeping track of things. For example, 1 apple plus 1
orange is 2 fruits, but so is 1 tomato and 1 olive. It will be necessary to distinguish between the pile
of 1 apple and 1 orange versus the pile of 1 tomato and 1 olive, because they are not interchangeable
when making a fruit salad.

For simplicity, let us assume there are only three different types of fruits: apples, oranges, and

tomatoes. We can express the sum 1 apple + 1 orange by the list ©­«
1
1
0

ª®¬, where we have established the

convention that the first (or top) of our list is the number of apples, the second (or middle) of our list
is the number of oranges, and the third (or bottom) of our list is the number of tomatoes. To create
a recipe, we need some standardized form of units: grams, pounds, cups, etc. So depending on
the unit we choose, the list will look different. But even if the numbers look different with different
units, the fruit salad that we have in mind will still be the same. We will call lists of numbers by
vectors, and the dimension of the vector is the length of the list. In our case, we are dealing with
vectors of dimension 3, because we only consider three types of fruits. Notice that the object (in
this case, a fruit salad) is represented as a vector, but the representation is not unique because we
can always change the units. To emphasize that objects are unbound to a particular vector, we will
write them using a special symbol. For example, a fruit salad named 𝐴 made with 100 grams of

apples and 20 grams of oranges could be represented as the vector ©­«
100
20
0

ª®¬. But we will refer to the

fruit salad itself by the symbol |𝐴⟩.
The next thing to do is to try and furnish an arithmetic. Now, it is straightforward to add and

subtract using vectors. For example, if we have a fruit salad |𝐴⟩ and another fruit salad |𝐵⟩, then
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we may add them together to get a bigger fruit salad by representing each as a vector in the same
units, and adding each up. For example, if |𝐴⟩ has 100 grams of apples and |𝐵⟩ has 20 grams of
oranges, then

𝐴 + 𝐵 =
©­«
100
0
0

ª®¬ + ©­«
0
20
0

ª®¬ =
©­«
100
20
0

ª®¬ .
Subtraction works the same way, but the plus sign becomes a minus sign. How about multiplication
and division? Well, it makes little sense to multiply two fruit salads, or to divide a fruit salad by
another, so we will not attempt to define a multiplication of vectors.2 However, it makes perfect
sense to double a portion of fruit salad or halve a portion of fruit salad. The scalar multiplication

of a scalar 𝑐 on a vector 𝐷 =
©­«
𝑑1
𝑑2
𝑑3

ª®¬, written 𝑐𝐷 is defined by

𝑐𝐷 := ©­«
𝑐 · 𝑑1
𝑐 · 𝑑2
𝑐 · 𝑑3

ª®¬ .
In fact, scalar multiplication could mean a change in portion, but also a change of units. For
example, to convert a vector whose unit in each entry is a gram (for standardization, we insist that
all entries in a vector share the same unit), then to convert it into a vector whose unit in each entry
is a kilogram, we do a scalar multiplication by 1/1000.

Linearity
Much like we can calculate the displacement of an object from time 𝑡𝑖 to 𝑡 𝑓 by applying inte-

gration to a function, or calculate the velocity of an object by applying differentiation to a function,
we can change the units of the entries in a vector from one to another by applying a change of
units. Let us denote the last operation by the symbol 𝑜 (much like a derivatives are indicated by ′).
With respect to the two arithmetic operations we know, vector addition and scalar multiplication
by scalar 𝑐 (a real number will sometimes be referred to as a scalar), the following holds:

(𝐴 + 𝐵)𝑜 = 𝐴𝑜 + 𝐵𝑜 and (𝑐𝐴)𝑜 = 𝑐𝐴𝑜 . (5.5)

The first simply reflects the fact that combining fruit salads and then changing units of measurement
gives us the same result as changing units after adding two fruit salads. The second comes from
the fact that halving a portion and then changing units is the same as changing units and then
halving a portion.

We have seen this before. For a real number 𝑐 and differentiable functions 𝑓 and 𝑔, we have

( 𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′, and (𝑐 𝑓 )′ = 𝑐 𝑓 ′.

Ditto for integration of bounded continuous functions 𝑓 and 𝑔 defined on an interval [𝑡𝑖 , 𝑡 𝑓 ]:∫ 𝑡 𝑓

𝑡𝑖

[
𝑓 (𝑥) + 𝑔(𝑥)

]
𝑑𝑥 =

∫ 𝑡 𝑓

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥 +
∫ 𝑡 𝑓

𝑡𝑖

𝑔(𝑥) 𝑑𝑥, and
∫ 𝑡 𝑓

𝑡𝑖

𝑐 𝑓 (𝑥) 𝑑𝑥 = 𝑐

∫ 𝑡 𝑓

𝑡𝑖

𝑓 (𝑥) 𝑑𝑥.

2We will revisit this matter later.
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Since this pattern has already occurred three times with respect to the most important operations,
we will single this out and call this property linearity. Thus an operation that satisfies the two
conditions in Equations 5.5 is said to be linear.

Matrices
We began with fruits and salads, yet unexpectedly returned to calculus. How about we consider

an example from calculus? One of the simplest nontrivial thing we can do with calculus is to
calculate derivatives of polynomials. Let us try representing polynomials using vectors. The catch
is that, like capping the number of fruits, we will need to cap the degree of the polynomials we are
considering. Let us fix the maximum degree at 2 and consider polynomials of the form 𝑎𝑥2+𝑏𝑥+ 𝑐.

We may write such a polynomial using vector notation as ©­«
𝑎
𝑏
𝑐

ª®¬. The derivative is the vector ©­«
0
2𝑎
𝑏

ª®¬, as

you can verify using the differentiation rules.
But which rules in which order? By linearity of the derivative operation,

©­«
𝑎
𝑏
𝑐

ª®¬
′

=
©­«
𝑎
0
0

ª®¬
′

+ ©­«
0
𝑏
0

ª®¬
′

+ ©­«
0
0
𝑐

ª®¬
′

= 𝑎
©­«
1
0
0

ª®¬
′

+ 𝑏 ©­«
0
1
0

ª®¬
′

+ 𝑐 ©­«
0
0
1

ª®¬
′

. (5.6)

Observe that is precisely an application of the sum rule and the product rule. By the power rule,

©­«
1
0
0

ª®¬
′

=
©­«
0
2
0

ª®¬ ©­«
0
1
0

ª®¬
′

=
©­«
0
0
1

ª®¬ ©­«
0
0
1

ª®¬
′

=
©­«
0
0
0

ª®¬ . (5.7)

Plugging these values back into Equation 5.6, we have

©­«
𝑎
𝑏
𝑐

ª®¬
′

= 𝑎
©­«
1
0
0

ª®¬
′

+ 𝑏 ©­«
0
1
0

ª®¬
′

+ 𝑐 ©­«
0
0
1

ª®¬
′

= 𝑎
©­«
0
2
0

ª®¬ + 𝑏 ©­«
0
0
1

ª®¬ + 𝑐 ©­«
0
0
0

ª®¬ =
©­«

0
2𝑎
𝑏

ª®¬ .
That was a long roundabout way of doing something we knew from the very beginning. Or

is it? Notice how once we have the values of derivatives at each entry calculated upfront, as in
Equations 5.7, all that is needed is just scalar multiplication and vector addition. No additional
calculus needed!

Since our strategy from the beginning was to do as little calculus as possible and replace it with
as much arithmetic as possible, this is very good news! Let us systemize this procedure.

Let ℝ𝑛 , called the 𝑛 dimensional real vector space, denote the set of vectors of dimension 𝑛 with
real entries, equipped with the vector addition and scalar multiplication operations. The (ordered)
standard basis of the 𝑛 dimensional real vector space are the 𝑛 vectors 𝑒1 , 𝑒2 , . . . , 𝑒𝑛 defined by the
following, and listed in that order.

𝑒1 =

©­­­­«
1
0
0
...

ª®®®®¬
𝑒2 =

©­­­­«
0
1
0
...

ª®®®®¬
𝑒3 =

©­­­­«
0
0
1
...

ª®®®®¬
· · · 𝑒𝑛 =

©­­­­«
0
...
0
1

ª®®®®¬
.
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To calculate the derivative of a polynomial of degree 𝑛 − 1, all we need to do is cache the result
of the power rule applied to each polynomial represented by the standard basis. After that, all we
need to do is scalar multiplication and vector addition. By the power rule,

𝑒′1 =

©­­­­«
0

𝑛 − 1
0
...

ª®®®®¬
𝑒′2 =

©­­­­«
0
0

𝑛 − 2
...

ª®®®®¬
· · · 𝑒′𝑛−1 =

©­­­­«
0
...
0
1

ª®®®®¬
𝑒′𝑛 =

©­­­­«
0
...
0
0

ª®®®®¬
.

There is no reason we need to keep track of 𝑛 vectors separately. How about we squash them all
together into one object, as shown below? We will call this concatenation of vectors.

𝐷 :=

©­­­­­«
0 0 · · · 0

𝑛 − 1 0 · · · 0
0 𝑛 − 2 · · · 0
...

...
. . .

...
0 0 · · · 0

ª®®®®®¬
(5.8)

Our new procedure for taking the derivative of a polynomial of degree at most 𝑛 − 1 is as
follows. Suppose we have vectors 𝑣1 , 𝑣2 , . . . , 𝑣𝑛 and scalars 𝑐1 , 𝑐2 , . . . , 𝑐𝑛 . A linear combination of
vectors 𝑣1 , . . . , 𝑣𝑛 with coefficients 𝑐1 , 𝑐2 , . . . 𝑐𝑛 is the expression

𝑐1𝑣1 + 𝑐2𝑣2 + · · · + 𝑐𝑛𝑣𝑛 .

For each polynomial 𝑝 = 𝑎1𝑥
𝑛−1 + 𝑎2𝑥

𝑛−2 + · · · + 𝑎𝑛 , we turn its vector representation 𝑣 into a linear
combination

𝑣 =

©­­­­«
𝑎1
𝑎2
...
𝑎𝑛

ª®®®®¬
= 𝑎1𝑒1 + 𝑎2𝑒2 + · · · 𝑎𝑛𝑒𝑛 .

The derivative can be found by looking at each column of the matrix 𝐷 defined in Equation 5.8:

𝑣′ = 𝑎1𝑒
′
1 + 𝑎2𝑒

′
2 + · · · 𝑎𝑛𝑒′𝑛 = 𝑎1 column 1 of 𝐷 + 𝑎2 column 2 of 𝐷 + · · · + 𝑎𝑛 column 𝑛 of 𝐷. (5.9)

Because 𝐷 contains all the information about derivatives of polynomials we need, it is our familiar
derivative operator, but represented as a matrix. A matrix is a rectangular table of numbers.
A matrix with 𝑚 rows and 𝑛 columns is said to have dimension 𝑚 × 𝑛. Notice that unlike a
vector which records static information about an object, a matrix is dynamic, taking a vector and
transforming it into another. In this case, the matrix 𝐷 takes in a polynomial of degree at most
𝑛 − 1 and transform it to another polynomial (its derivative).

Let us try and apply what we have discovered to fruits. The key operator here is the change of
units. Suppose we were measuring fruits in grams and we wished to measure instead in kilograms.
Using the notation 𝑜 to signify the change of units, we have

𝑒𝑜1 =
©­«
1/1000

0
0

ª®¬ 𝑒𝑜2 =
©­«

0
1/1000

0

ª®¬ 𝑒𝑜3 =
©­«

0
0

1/1000

ª®¬ .
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Then the change of unit can be represented as a matrix

𝐶 := ©­«
1/1000 0 0

0 1/1000 0
0 0 1/1000

ª®¬ .
To do a change of units for a fruit salad recipe |𝑟⟩, we take its vector representation 𝑟 = ©­«

𝑟1
𝑟2
𝑟3

ª®¬, turn

it into a linear combination of standard basis vectors, then apply the rule

𝑟𝑜 = 𝑟1 column 1 of 𝐶 + 𝑟2 column 2 of 𝐶 + 𝑟3 column 3 of 𝐶. (5.10)

Since it gets rather tedious to right out the expressions in Equations 5.9 and Equations 5.10, we will
use the shorthand 𝐷𝑣 and 𝐶𝑟, respectively.

Thus if we have a matrix 𝐴 and a vector 𝑣 defined by

𝐴 :=
©­­­­«
𝐴11 𝐴12 · · · 𝐴1𝑛
𝐴21 𝐴22 · · · 𝐴2𝑛
...

...
. . .

...
𝐴𝑚1 𝐴𝑚2 · · · 𝐴𝑚𝑛

ª®®®®¬
and 𝑣 :=

©­­­­«
𝑣1
𝑣2
...
𝑣𝑛

ª®®®®¬
then the expression 𝐴𝑣 is the vector defined by the sum

𝐴𝑣 := 𝑣1

©­­­­«
𝐴11
𝐴21
...

𝐴𝑚1

ª®®®®¬
+ 𝑣2

©­­­­«
𝐴12
𝐴22
...

𝐴𝑚2

ª®®®®¬
+ · · · + 𝑣𝑛

©­­­­«
𝐴1𝑛
𝐴2𝑛
...

𝐴𝑚𝑛

ª®®®®¬
.

Computing the vector additions above, we have

𝐴𝑣 :=
©­­­­«
𝐴11𝑣1 + 𝐴12𝑣2 + · · · + 𝐴1𝑛𝑣𝑛
𝐴21𝑣1 + 𝐴22𝑣2 + · · · + 𝐴2𝑛𝑣𝑛

...
𝐴𝑚1𝑣1 + 𝐴𝑚2𝑣2 + · · ·𝐴𝑚𝑛𝑣𝑛

ª®®®®¬
. (5.11)

This looks a little scary, but do not fear, for we are simply restating what we have been doing with
derivatives of polynomials and changing units of fruits.

Partial derivatives

We interrupt this program to bring you some calculus! Suppose we have a function 𝑓 that takes
as inputs vectors of dimension 𝑛 and outputs a real number. We can think of function 𝑓 as taking
𝑛 inputs, and a natural question to ask is what its rate of change is with respect to one of the 𝑛
inputs.
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In order to do this for the 𝑘th input, we start from 𝑓 (𝑡) and vary 𝑡 by 𝛼𝑒𝑘 . If there is a number
𝜕𝑘 𝑓 (𝑡) such that the following equation holds:

𝑓 (𝑡 + 𝛼𝑒𝑘) = 𝑓 (𝑡) + 𝜕𝑘 𝑓 (𝑡)𝛼 + 𝑜(𝛼)

then we know that the rate of change of function 𝑓 at 𝑡 is given by 𝜕𝑘 𝑓 (𝑡). The number 𝜕𝑘 𝑓 (𝑡) is
called the partial derivative of 𝑓 at 𝑡 with respect to the 𝑘th variable.

Back in Section 3.4 when we were showing that log
(
𝑥𝑦

)
= log 𝑥 + log 𝑦, we defined a function

𝑔 : 𝑥 ↦→ log
(
𝑥𝑦

)
− log 𝑥. The function 𝑔 is a function of a single variable because the quantity 𝑦

was treated as a constant. Taking the derivative of 𝑔 gave us

𝑔′(𝑥) = 1
𝑥𝑦

d
d𝑥 (𝑥𝑦) −

1
𝑥
=

𝑦

𝑥𝑦
− 1
𝑥
= 0.

We could have achieved the same thing by defining 𝑓 as a function of two variables 𝑥 and 𝑦 defined
by 𝑓 (𝑥, 𝑦) := log

(
𝑥𝑦

)
− log 𝑥 and then taking the partial derivative with respect to 𝑥 to get:3

𝜕𝑥 𝑓 (𝑥, 𝑦) =
1
𝑥𝑦

𝜕𝑥(𝑥𝑦) −
1
𝑥
=

𝑦

𝑥𝑦
− 1
𝑥
= 0.

The reason is the same as why (𝑐𝑥)′ = 𝑐𝑥′whenever 𝑐 is a fixed number. In the definition of a partial
derivative, the only thing we vary is the 𝑘th variable by adding 𝛼𝑒𝑘 , while all other inputs are fixed
numbers. For example, if ℎ(𝑥, 𝑦) = 3𝑥𝑦 + 𝑦2 and we want to know 𝜕1ℎ(2, 5), then 𝑦 is no longer
a variable: it is the constant 5. This means that partial derivatives obey the same differentiation
rules as our ordinary derivatives.4

A popular notation that we will use is that if we have a function 𝑓 which has inputs denoted
by the variables ♣, ♠, then we will write 𝜕 𝑓

𝜕♣ and 𝜕 𝑓
𝜕♠ to denote the partial derivatives with respect to

♣ and ♠, respectively. If the function 𝑓 is twice partial differentiable with respect to the ♣ variable,
then we write 𝜕2 𝑓

𝜕♣2 .
If 𝑓 is a function of 𝑛 variables, then the gradient of 𝑓 at 𝑡, denoted by ∇ 𝑓 (𝑡), is defined to be

∇ 𝑓 (𝑡) :=
©­­«
𝜕1 𝑓 (𝑡)
...

𝜕𝑛 𝑓 (𝑡)

ª®®¬ .
There is also a Laplacian operator, denoted by the symbol ∇2 or ∆, defined by

∇2 𝑓 :=
𝑛∑
𝑖=1

𝜕2
𝑖 𝑓 .

3The notation 𝜕𝑥 is used in place of 𝜕1 because we know that 𝑥 is the first variable.
4Feel free to check this. It amounts to defining functions of one variable and then applying the usual differentiation

rules. The process is the same as finding 𝜕1ℎ(2, 5) for ℎ(𝑥, 𝑦) = 3𝑥𝑦 + 𝑦2 by defining ℎ̃(𝑥) = 3𝑥 · 5 + 52 to obtain a function
of one variable, then taking the derivative ℎ̃′ and plugging in 2 for 𝑥 to get 𝜕1ℎ(2, 5) = ℎ′(2) = 15.
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Matrix multiplication
Although units do not support chaining, functions do. Vectors do not support chaining, but we

can chain matrices together, as in (𝐴 ◦ 𝐵)𝑣 := 𝐴(𝐵𝑣). We will use the shorthand 𝐴𝐵𝑣 to mean the
same thing. Looking at the ghastly expression of Equation 5.11, it may seem like we are asking for
trouble. But once again, matrices are nothing scary. All they do is tell us how to transform vectors.

We got our first matrix 𝐷 from Equation 5.8 by concatenating (squashing) vectors together.

𝑒′1 =

©­­­­«
0

𝑛 − 1
0
...

ª®®®®¬
𝑒′2 =

©­­­­«
0
0

𝑛 − 2
...

ª®®®®¬
· · · 𝑒′𝑛 =

©­­­­«
0
...
0
0

ª®®®®¬
=⇒ 𝐷 :=

©­­­­­«
0 0 · · · 0

𝑛 − 1 0 · · · 0
0 𝑛 − 2 · · · 0
...

...
. . .

...
0 0 · · · 0

ª®®®®®¬
Recalling this fact, we can study the chain 𝐴𝐵 independently of the input vector 𝑣 just as we can
study 𝑓 ◦ 𝑔 independently from its input 𝑡. Since a matrix exists to transform vectors, the matrix 𝐴
in the chain 𝐴𝐵 is looking for a vector. But matrix 𝐵 is simply a concatenation of vectors, just like
our matrix 𝐷 was a concatenation of vectors. In particular, the 𝑗th column of a matrix 𝐵, denoted
by the notation 𝐵 𝑗 , is a vector, which is exactly what 𝐴 is looking for! The following is an example
from our derivative matrix 𝐷.

𝐷1 =

©­­­­«
0

𝑛 − 1
0
...

ª®®®®¬
:= 𝑒′1 𝐷2 =

©­­­­«
0
0

𝑛 − 2
...

ª®®®®¬
:= 𝑒′2 · · · 𝐷𝑛−1 =

©­­­­«
0
...
0
1

ª®®®®¬
:= 𝑒′𝑛−1 𝐷𝑛 =

©­­­­«
0
...
0
0

ª®®®®¬
:= 𝑒′𝑛

So we simply repeat what we have done and apply 𝐵 to each of the columns of 𝐴, then concatenate
them together.

Let us see this in action for our polynomial derivative matrix 𝐷. We are allowed to take
derivatives as many times as we wish with polynomials. So if we want to take a derivative a
second time, then we simply apply the matrix 𝐷 to each of 𝐷1 , 𝐷2 , . . . , 𝐷𝑛 using the fact that
𝐷(𝐷𝑖) := 𝐷(𝑒′

𝑖
) = (𝑒𝑖)′′. To obtain our matrix for taking derivatives twice, which we will refer to

as 𝐷2, we simply do what we did before: concatenate the vectors 𝐷(𝐷𝑖) together. To recap, the
operation 𝐷2 to take derivatives twice is given by the matrix whose 𝑘th column is given by the
vector 𝐷(𝐷𝑘), or in matrix form:

𝐷2 := 𝐷𝐷 =
©­«
| | · · · |

𝐷(𝐷1) 𝐷(𝐷2) · · · 𝐷(𝐷𝑛)
| | · · · |

ª®¬ .
Challenge 33

(a) Find the matrix 𝐷 for differentiating a polynomial of degree at most four (polynomials of the
form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑). Check your answer agrees with our derivative matrix given above.

(b) Find the matrix 𝐷2 two different ways. First, by calculating (𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑)′′ and caching
the rule for transforming standard basis vectors 𝑒1 , 𝑒2 , 𝑒3, and 𝑒4 as one object through con-
catenation. Second, calculate the vectors 𝐷(𝐷1), 𝐷(𝐷2), 𝐷(𝐷3), and 𝐷(𝐷4), then concatenate
the four vectors as one object. Verify that your results from both methods are equal.
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Let us review this prescription for a general matrix. Suppose 𝐵 is a matrix that takes in a vector
𝑣 of dimension 𝑛 and produces a vector 𝐵𝑣 of dimension 𝑚, where 𝑛 and 𝑚 are positive integers.
We want to feed this result into a second matrix 𝐴, which takes in a vector of dimension 𝑚 and
produces a vector of positive integer dimension 𝑙. Then their product matrix 𝐶 := 𝐴𝐵 takes in
a vector of dimension 𝑛 and returns a vector of dimension 𝑙. This means that to figure out the
product matrix 𝐶, we need 𝑙 piece of information: how 𝐶 transforms each of the vectors of the
standard basis 𝑒1 , 𝑒2 , . . . , 𝑒𝑙 . Once we have those information, we can combine them together as
one object:

𝐶 := 𝐴𝐵 =
©­«
| | · · · |
𝐶𝑒1 𝐶𝑒2 · · · 𝐶𝑒𝑛
| | · · · |

ª®¬ .
Using the fact that 𝐶 := 𝐴𝐵 and that 𝐵𝑖 := 𝐵𝑒𝑖 , we have the following.

𝐶 =
©­«
| | · · · |
𝐶𝑒1 𝐶𝑒2 · · · 𝐶𝑒𝑛
| | · · · |

ª®¬ =
©­«
| | · · · |

𝐴𝐵𝑒1 𝐴𝐵𝑒2 · · · 𝐴𝐵𝑒𝑛
| | · · · |

ª®¬ =
©­«
| | · · · |

𝐴𝐵1 𝐴𝐵2 · · · 𝐴𝐵𝑛
| | · · · |

ª®¬
We restate what we have found.

Definition 48. Let 𝐴 be a matrix of dimension 𝑙 × 𝑚 and 𝐵 be a matrix of dimension 𝑚 × 𝑛. The
matrix multiplication 𝐴𝐵 of the two matrices 𝐴 and 𝐵 results in a matrix 𝐶 of dimension 𝑙 × 𝑛
defined by 𝐶𝑘 := 𝐴𝐵𝑘 .

Notice that a matrix cannot transform just any old vector, and so there is some restriction in our
ability to do matrix multiplication. For example, if the vector 𝑣 has dimension 5, but matrix 𝐵 has
dimension 1 × 1, then the matrix 𝐵 cannot transform the vector 𝑣. In order for the chain 𝐴𝐵𝑣 to
work, matrix 𝐴must have dimension ♣×𝑚, where ♣ is any positive integer and𝑚 is the dimension
of 𝐵𝑣.5 To recap, we can chain a matrix 𝐴 of dimension ♣ × 𝑚 with a matrix 𝐵 of dimension 𝑚 × ♠
to get the chain 𝐴𝐵, but we may not form the chain 𝐵𝐴 unless ♣ = ♠.

What about chaining three or more matrices? Consider the chain 𝐴𝐵𝐶 for matrices 𝐴, 𝐵, and
𝐶 (with the appropriate dimensions). There is potentially some ambiguity, for 𝐴𝐵𝐶 could mean
the matrix multiplication (𝐴𝐵)𝐶 or 𝐴(𝐵𝐶). Well, a matrix is nothing more than a way to cache
the rules for transforming vectors. Hence matrices are simply a concrete way of writing down
a particular class of functions (linear functions). Recall that function composition is associative.
Thus the results ( 𝑓 ◦ 𝑔) ◦ ℎ(𝑥) and 𝑓 ◦ (𝑔 ◦ ℎ)(𝑥) are the same. If we represent a linear function
𝑓 by the matrix 𝐴, a linear function 𝑔 by the matrix 𝐵, and a linear function ℎ by the matrix 𝐶,
then for each vector 𝑣 with the appropriate dimension, (𝐴𝐵)𝐶𝑣 and 𝐴(𝐵𝐶𝑣) will give the same
result. Therefore, the expression 𝐴𝐵𝐶 is unambiguous, and matrix multiplication is associative:
(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).

There is a distinguished matrix 𝐼, defined by 𝐼𝑘 := 𝑒𝑘 . That is,

𝐼 :=

©­­­­­«
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1

ª®®®®®¬
.

5Recall that a matrix has dimension ♣ × 𝑛 if the matrix has ♣ rows and 𝑛 columns.



DRAFT
94 CHAPTER 5. DYNAMICS

The rule that matrix 𝐼 uses to transform vectors is: transform a standard basis vector 𝑒𝑖 into 𝑒𝑖 .
Hence for each vector 𝑣, the vector 𝐼𝑣 = 𝑣. By the definition of matrix multiplication, for each
matrix 𝑀, the matrix multiplications 𝐼𝑀 = 𝑀𝐼 = 𝑀. Because the matrix 𝐼 does nothing, it is called
the identity matrix. We will also denote it by 1, because the number 1 is the distinguished real
number such that for each number 𝑐, 1 · 𝑐 = 𝑐 · 1 = 𝑐.

There is also a rather silly matrix called the zero matrix, which we will denote 0, defined as the
matrix with zero everywhere:

0 :=
©­­«
0 · · · 0
...

. . .
...

0 · · · 0

ª®®¬ .
For each matrix, 𝑀, we have 𝑀0 = 0𝑀 = 0. Once again, this is in analogy to the real number 0,
with the property 0 · 𝑐 = 𝑐 · 0 = 0 for each real number 𝑐.

We can multiply a real number by another real number. We can also multiply a real number
to a matrix. For a real number 𝑐 and matrix 𝑀, the matrix 𝑐𝑀 is the matrix whose entries have
each been multiplied by 𝑐. For example, in the context of matrices, −1 denotes the identity matrix
1 multiplied by the real number −1:

−1 :=
©­­­­«
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

ª®®®®¬
.

Challenge 34 Denoting a matrix 𝐼 by the number 1 and the zero matrix by the number 0 is our
first step in accepting matrices as numbers we can do arithmetic with (just like we did for units
and functions). However, matrices and matrix multiplication exhibit some odd behavior that we
have not seen with real numbers. This makes matrices more exciting!

(a) As a warm up, use the definition of matrix multiplication and the matrix transformation rule

given in Equation 5.11 to show that if 𝐴 :=
(
𝑎 𝑏
𝑐 𝑑

)
and 𝐵 :=

(
𝑤 𝑥
𝑦 𝑧

)
then

𝐴𝐵 =

(
𝑎𝑤 + 𝑏𝑦 𝑎𝑥 + 𝑏𝑧
𝑐𝑤 + 𝑑𝑦 𝑐𝑥 + 𝑑𝑧

)
.

(b) Let 𝐴 =

(
0 1
1 0

)
and 𝐵 =

(
1 1
0 1

)
. Show that 𝐴𝐵 ≠ 𝐵𝐴. We say that matrix multiplication is

not commutative, because changing the order of multiplication may change the result.

(c) Let 𝜖 :=
(
0 1
0 0

)
. Show that 𝜖2 := 𝜖𝜖 = 0, even though 𝜖 ≠ 0. This justifies the mysterious dual

numbers. It is perfectly possible to have non-zero things that square to a zero.

(d) Let 𝐴 :=
(

0 1
−1 0

)
and 𝐵 :=

(
0 −1
1 0

)
. Show that 𝐴2 := 𝐴𝐴 = −1 and 𝐵2 := 𝐵𝐵 = −1.

The German theoretical physicist Werner Heisenberg was one of the founders of the field of
quantum theory. He published his Nobel Prize winning paper on matrix mechanics at the age of
24, laying the foundation of quantum mechanics. It which would make obsolete “old quantum
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theory", which were heuristics used to attempt to explain quantum mechanical phenomena. He
would later receive the Nobel Prize in Physics at the age of 31 “for the creation of quantum
mechanics".6 You now know more about matrices than Heisenberg did when he was creating
his matrix formulation of quantum mechanics! Matrix theory was considered at the time to be
abstract mathematics (matrix multiplication was only first written down in the 19th Century).
Congratulations on making it this far!

5.3 The Complex Field

An algebra
We have so far made zero attempt to multiply two vectors, even though vector multiplication

seems like a natural thing to try and figure out. Rather than engaging in excessive generality, we
will explore a nontrivial yet simple setting: multiplying two vectors, each with two real entries.7
So here is the plan: we have two vectors 𝑣 and 𝑤, and we want to create their product 𝑢. If 𝑢 and
𝑣 were basis vectors, it would make sense for us to write this out as a linear combination:

𝑢 = 𝑣 · 𝑤 = 𝑎𝑣 + 𝑏𝑤
where 𝑎, 𝑏 are constants. So let us consider the multiplication of basis vectors.

Everything is happening in the simple setting of two entries and so two basis vectors is sufficient
to describe all our vectors involved, including products. Since all our product vectors can be
expressed as a linear combination of two basis vectors, let us try to identify a good candidate for
these two basis vectors, which we will call 𝛼 and 𝛽. First, let us assign a vector to 𝛼, so we have
something to work with. The simplest thing would be to consider the vector 𝛼 as the number
zero, but with our intuition from real numbers, we would expect everything multiplied to a zero
to become zero. This is far too trivial: for each vector 𝑣, we have 𝛼 · 𝑣 = 𝛼.8 The next simplest is to
consider the vector 𝛼 as the number 1, so that 𝛼 · 𝑣 = 𝑣 · 𝛼 = 𝑣. Now what about the vector 𝛽? Let
us write down what we have figured out so far:

𝛼 · 𝛼 = 𝛼, 9 𝛼 · 𝛽 = 𝛽 · 𝛼 = 𝛽, 10 𝛽 · 𝛽 = 𝑎𝛼 + 𝑏𝛽
where 𝑎 and 𝑏 are scalar constants (and not vectors).

What do we do next? There is no more information to go by. The only knob we have at our
disposal is our freedom in how we define 𝛽. So let’s see what happens if we pull apart the vector
𝛼 out from 𝛽. Define 𝛽̄ := 𝛽 − 𝑐𝛼, where 𝑐 is a real number.11 Then

𝛽̄ · 𝛽̄ = (𝛽 − 𝑐𝛼) · (𝛽 − 𝑐𝛼) = 𝛽 · 𝛽 − 2𝑐𝛼 · 𝛽 + 𝑐2𝛼 · 𝛼.
Using our known information 𝛽 · 𝛽 := 𝑎𝛼 + 𝑏𝛽, 𝛼 · 𝛼 = 𝛼, 𝛼 · 𝛽 = 𝛽 and simplifying, we have

𝛽̄ · 𝛽̄ = (𝑎 + 𝑐2)𝛼 + (𝑏 − 2𝑐)𝛽.
6Obviously no one created quantum phenomena, but someone had to work out the theory of quantum mechanics.
7We already know how to multiply two vectors, each with one real entry. Two entries is the next simplest.
8It turns out that such a simple structure is the foundation of some very applicable mathematics, but we will not deal

with this in this book.
9This is the analogue of 1 · 1 = 1.

10This is the analogue of 1 · 𝛽 = 𝛽 · 1 = 𝛽.
11Since we do not know a priori how much 𝛼 we need to pick out of 𝛽, we will quantify our ignorance with this new

constant 𝑐.
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Now check this out! If 2𝑐 := 𝑏, then 𝛽̄ · 𝛽̄ = 𝑑𝛼, for some constant 𝑑. The choice of basis vector
𝛽̄ := 𝛽 − (𝑏/2)𝛼 is superior, so let us forget that 𝛽 existed by replacing it with 𝛽̄ to get

𝛽̄ · 𝛽̄ = (𝑎 + [𝑏/2]2)𝛼 + (𝑏 − 2𝑐)[𝛽 − (𝑏/2)𝛼] = (𝑎 + 𝑏2/4)𝛼 + (𝑏 − 2𝑐)𝛽̄ = (𝑎 + 𝑏2/4)𝛼.

What we have successfully done is to turn our abstract problem of trying to multiply two vectors
into something that’s like multiplying two real numbers: 𝛼 corresponds to the real number 1 and
𝛽̄2 corresponds to the real number 𝑑 := 𝑎 + 𝑏2/4. There are three possibilities for the real number
𝑑: (i) 𝑑 = 0 or (ii) 𝑑 > 0 or (iii) 𝑑 < 0. In actuality, because we can choose any units to scale things
as we wish, there are really only three unique values we need to contemplate. Either 𝑑 is 0, 1, or
−1. In other words, we have 𝛽̄2 = 0 or 𝛽̄2 = 1 or 𝛽̄2 = −1.

Now this is very interesting, we have already seen the case of 𝛽̄2 = 0 in our encounter with
dual numbers. The case of 𝛽̄2 = 1 is not super interesting because 𝛼2 = 1 as well. But what’s this?
The case of 𝛽̄2 = −1, now that’s something! Where have we seen this before? We have seen such a

behavior in Challenge 34 with the matrices
(

0 1
−1 0

)
and

(
0 −1
1 0

)
, which both square to the matrix

−1. Since we have to make a choice, we will take

𝛼 :=
(
1 0
0 1

)
and 𝛽̄ :=

(
0 −1
1 0

)
and we will call the matrix

(
0 1
−1 0

)
the conjugate of 𝛽̄.

So how did we go from starting with an attempt to multiply two vectors and end up with
matrices? Indeed, the “vectors" 𝛼 and 𝛽̄ look like matrices, each with four entries, and they do not
look like “vectors". To see that these are also vectors with two entries, but in a different notation,
consider the linear combination of the basis vectors:

𝑥𝛼 + 𝑦𝛽̄ = 𝑥

(
1 0
0 1

)
+ 𝑦

(
0 −1
1 0

)
=

(
𝑥 −𝑦
𝑦 𝑥

)
.

The “matrices" we are dealing with only have two knobs to change about, and so they can be
described by vectors of dimension two. In fact, how about we make this explicit right now?

Complex numbers
We will now treat the matrices 𝛼 and 𝛽̄ as numbers. There is no problem thinking of 𝛼 as the

real number 1, as we have done so before, but the catch is that we have to remember that 𝛽̄ squares
to −1. Because of this curious property, we call 𝛽̄ the imaginary number and denote it with the
symbol 𝑖. Of course, there is nothing more imaginary about 𝑖 compared to the real numbers, but
this is the nomenclature.

Thus the linear combination 𝑥𝛼+𝑦𝛽̄ for real numbers 𝑥 and 𝑦will now be written as the number
𝑥 + 𝑦𝑖, and we call the set of such numbers the complex numbers. The set of complex numbers is
denoted by the symbol ℂ. We have a new number system, so let us explore its arithmetic.

We may think of a complex number 𝑥 + 𝑦𝑖 as a vector of dimension two (or perhaps as a fruit
salad where we accept only two different types of fruits). Thus to add two complex numbers
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𝑧1 := 𝑎 + 𝑏𝑖 and 𝑧2 := 𝑐 + 𝑑𝑖, where 𝑎, 𝑏, 𝑐, and 𝑑 are real numbers, we use vector addition:(
𝑎
𝑏

)
+

(
𝑐
𝑑

)
=

(
𝑎 + 𝑐
𝑏 + 𝑑

)
.

Hence the sum of our two complex numbers 𝑧1 , 𝑧2 is given by the complex number 𝑧1 + 𝑧2 :=
(𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. In fact, since, a complex number can also be represented as a matrix, it should be
possible to write the above as(

𝑎 −𝑏
𝑏 𝑎

)
+

(
𝑐 −𝑑
𝑑 𝑐

)
=

(
𝑎 + 𝑐 −[𝑏 + 𝑑]
𝑏 + 𝑑 𝑎 + 𝑐

)
.

To ensure this, matrix addition should be defined for matrix with matching dimensions as follows.

©­­­­«
𝐴11 · · · 𝐴1𝑛
𝐴21 · · · 𝐴2𝑛
...

. . .
...

𝐴𝑚1 · · · 𝐴𝑚𝑛

ª®®®®¬
+

©­­­­«
𝐵11 · · · 𝐵1𝑛
𝐵21 · · · 𝐵2𝑛
...

. . .
...

𝐵𝑚1 · · · 𝐵𝑚𝑛

ª®®®®¬
=

©­­­­«
𝐴11 + 𝐵11 · · · 𝐴1𝑛 + 𝐵1𝑛
𝐴21 + 𝐵21 · · · 𝐴2𝑛 + 𝐵2𝑛

...
. . .

...
𝐴𝑚1 + 𝐵𝑚1 · · · 𝐴𝑚𝑛 + 𝐵𝑚𝑛

ª®®®®¬
Ok, so we know how to add complex numbers. Subtracting a complex number from a complex

number is just as simple: 𝑧1− 𝑧2 := (𝑎− 𝑐)+(𝑏−𝑑)𝑖. How about multiplying two complex numbers?
Here it will be useful to recall the definition of matrix multiplication. We will use the shortcut from

Challenge 34: if 𝐴 :=
(
𝑎 𝑏
𝑐 𝑑

)
and 𝐵 :=

(
𝑤 𝑥
𝑦 𝑧

)
, then

𝐴𝐵 =

(
𝑎𝑤 + 𝑏𝑦 𝑎𝑥 + 𝑏𝑧
𝑐𝑤 + 𝑑𝑦 𝑐𝑥 + 𝑑𝑧

)
.

Therefore, if 𝑧1 := 𝑎 + 𝑏𝑖 and 𝑧2 := 𝑐 + 𝑑𝑖 are complex numbers, then their product 𝑧1𝑧2 can be
represented in matrix form by(

𝑎 −𝑏
𝑏 𝑎

) (
𝑐 −𝑑
𝑑 𝑐

)
=

(
𝑎𝑐 − 𝑏𝑑 −𝑏𝑑 − 𝑎𝑑
𝑎𝑑 + 𝑏𝑐 −𝑏𝑑 + 𝑎𝑐

)
=

(
𝑎𝑐 − 𝑏𝑑 −(𝑎𝑑 + 𝑏𝑐)
𝑎𝑑 + 𝑏𝑐 𝑎𝑐 − 𝑏𝑑

)
.

Therefore, the product of two complex numbers 𝑧1 and 𝑧2 is given by the complex number

𝑧1𝑧2 := (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖.

Addition of complex numbers was quite simple, but multiplication looks complicated. Yet
there is some method to the madness. Let us turn off the pesky 𝑖 term by setting 𝑏 = 𝑑 = 0 in
our complex numbers 𝑧1 := 𝑎 + 𝑏𝑖 and 𝑧2 := 𝑐 + 𝑑𝑖. Then addition of two complex numbers is
𝑧1 + 𝑧2 = (𝑎 + 𝑏) + 0𝑖 and multiplication of two complex numbers is 𝑧1𝑧2 = 𝑎𝑐 + 0𝑖. We have been
able to recover the familiar addition and multiplication of real numbers! To amplify the fact that
something familiar is still with us, we use the following definition.

If 𝑧 := 𝑥 + 𝑦𝑖 is a complex number for real numbers 𝑥 and 𝑦, then Re 𝑧 := 𝑥 is called the real
part of 𝑧 and Im 𝑧 := 𝑦 is called the imaginary part of 𝑧.

We can divide real numbers. Can we divide a complex number by another complex number?
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Challenge 35 If 𝐴 is a matrix with dimension 𝑛 × 𝑛, then matrix 𝐴 is said to be invertible if there
is a matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 1.12 The matrix 𝐵 is called the inverse matrix of 𝐴, and is
denoted by the symbol 𝐴−1.

(a) As a warmup, show that if 𝐵 is a matrix inverse of 𝐴, then 𝐴 is a matrix inverse of 𝐵. Use the
fact that matrix multiplication is associative and 𝐵 = 1𝐵 = 𝐵1 to show that matrix inverses
are unique by supposing 𝐵 and 𝐶 are matrix inverses of 𝐴 and concluding that 𝐵 = 𝐶.13

(b) Let 𝐴 :=
(
𝑎 𝑏
𝑐 𝑑

)
and 𝐵 :=

(
𝑤 𝑥
𝑦 𝑧

)
so that 𝐴𝐵 =

(
𝑎𝑤 + 𝑏𝑦 𝑎𝑥 + 𝑏𝑧
𝑐𝑤 + 𝑑𝑦 𝑐𝑥 + 𝑑𝑧

)
. For 𝐵 to be an inverse of

𝐴, it is necessary (but not sufficient) that 𝐴𝐵 = 1, in particular:

𝑎𝑤 + 𝑏𝑦 = 1, 𝑎𝑥 + 𝑏𝑧 = 0, 𝑐𝑤 + 𝑑𝑦 = 0, 𝑐𝑥 + 𝑑𝑧 = 1.

The values of 𝑎, 𝑏, 𝑐, and 𝑑 are constants and we wish to find the values of the real numbers
𝑤, 𝑥, 𝑦, and 𝑧 so that the above holds. Find the values 𝑤, 𝑥, 𝑦, 𝑧.14

(c) Show that your answer from part (b) can be written as 𝑤 = 𝑑/(𝑎𝑑 − 𝑏𝑐), 𝑥 = −𝑏/(𝑎𝑑 − 𝑏𝑐),
𝑦 = −𝑐/(𝑎𝑑 − 𝑏𝑐), and 𝑧 = 𝑎/(𝑎𝑑 − 𝑏𝑐).

(d) Show that if 𝑎𝑑 − 𝑏𝑐 ≠ 0, then 𝐵𝐴 = 1, where the entries of matrix 𝐵 are as you found in
part (b) or part (c). Conclude that the matrix 𝐴 with dimension 2 × 2 has an inverse when
𝑎𝑑 − 𝑏𝑐 ≠ 0 with

𝐴−1 := 1
det𝐴

(
𝑑 −𝑏
−𝑐 𝑎

)
where det𝐴 := 𝑎𝑑 − 𝑏𝑐 is the determinant of a matrix 𝐴 of dimension 2× 2. If a determinant
is nonzero, the matrix 𝐴 is invertible. If 𝐵 =

(
𝑏
)

is a 1× 1 matrix, then matrix 𝐵 is invertible if
it is not the zero matrix, and so det 𝐵 := 𝑏 and its inverse matrix is given by 𝐵−1 :=

( 1
𝑏

)
.

(e) Show that if 𝐴 and 𝐵 are two 2 × 2 matrices then det(𝐴𝐵) = det𝐴det 𝐵.
(f) Let 𝑧 := 𝑥 + 𝑦𝑖 be a complex number where 𝑥 and 𝑦 are real numbers. Define 1/𝑧 (the

multiplicative inverse of 𝑧) to be the complex number such that 𝑧 · (1/𝑧) = (1/𝑧) · 𝑧 = 1. By
part (a), this number is unique. Find a formula for 1/𝑧. When does a complex number 𝑧 not
have a multiplicative inverse?

(g) Verify that your answer from part (f) matches our intuition from real numbers by setting
𝑦 := 0 and checking that it is the same as that of real numbers.

(h) Define the division of a complex number 𝑧1 := 𝑎 + 𝑏𝑖 by another complex number 𝑧2 := 𝑐 + 𝑑𝑖
by the product 𝑧1 · (1/𝑧2), whenever (1/𝑧2) exists. What is Re(𝑧1/𝑧2) and Im(𝑧1/𝑧2)? Check
that it matches our intuition from real numbers by setting 𝑏 := 0 and 𝑑 := 0.

Challenge 35 shows that we can divide complex numbers by other nonzero complex numbers,15
just like real numbers! In fact, we see that real numbers are a special case of complex numbers
where the imaginary part is 0. A number system where we can do all the arithmetic operations
(addition, subtraction, multiplication, division by nonzero numbers) as with real numbers, is called

12For the two matrix multiplications to work, we see that if 𝐵 exists, it must have dimension 𝑛 × 𝑛. A matrix is called a
square matrix it has the same number of rows and columns. We see that non square matrices do not have matrix inverses
(there are however, pseudo inverses).

13Hint: 𝐵 = 1𝐵 = (𝐶𝐴)𝐵.
14Hint: the second equation tells us 𝑥 = −𝑏𝑧/𝑎. Plugging this into the fourth equation gives us a formula for 𝑧 in terms

of the constants 𝑎, 𝑏, 𝑐, and 𝑑. Then you also know the formula for 𝑥, and are halfway done!
15A nonzero complex number is a complex number with at least one nonzero real part or imaginary part.
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a field. Because we can do all the arithmetic operations with complex numbers just as we do with
the real numbers, the complex numbers with its arithmetic operations form a field called the
complex field. The numbers in a field are called scalars, and since we upgrade our number system
from real numbers to the complex numbers, by a scalar, we mean a complex number.

Further concepts
The sum of the squares of the real part and imaginary part of a complex number appeared

numerous times in Challenge 35, and so it is useful to isolate this concept. For a complex number
𝑧 := 𝑥 + 𝑦𝑖, the absolute value of 𝑧, written |𝑧|, is defined as the number

√
𝑥2 + 𝑦2.

Observe that because 𝑥 and 𝑦 are real numbers, the absolute value of a complex number is
always a real number. Furthermore, if 𝑦 = 0, then this matches our definition of an absolute value
of a real number. In fact, the only complex number with absolute value 0 is the real number 0.

There is an alternative way of calculating the absolute value of a complex number 𝑧. The
complex conjugate of a complex number 𝑧 := 𝑥 + 𝑦𝑖, denoted by the symbol 𝑧∗, is the complex
number 𝑥 − 𝑦𝑖. That is, the complex conjugate of a complex number 𝑧 is the same number, with
Im 𝑧 switching signs. Using the formula for the products of complex numbers, we obtain:

√
𝑧𝑧∗ =

√
(𝑧∗)𝑧 = |𝑧|.

A real number 𝑥 has no imaginary part, and so 𝑥∗ = 𝑥.
By the definition of an absolute value for a complex number 𝑧, we have |𝑧|2 = (Re 𝑧)2 + (Im 𝑧)2.

In particular, if |𝑧| = 1, then we have the equation (Re 𝑧)2 + (Im 𝑧)2 = 1. This is an equation we have
seen several times already! It is the equation of a unit circle.

real axis

imaginary axis
1

1−1

−1

Figure 5.12: The set of complex numbers 𝑧 with |𝑧| = 1 form a unit circle (the blue circle).

A diagram of the plane, where the 𝑥-axis represents the values of the real part of a complex
number, and the 𝑦-axis represents the values of the imaginary part of a complex number, is called
an Argand diagram.16 Figure 5.12 is an example of an Argand diagram.

From Figure 5.13, we see that geometrically the conjugation operation on a complex number
is a reflection across the real axis. Recall that when we were creating the complex numbers, there

were two matrices that squared to −1, the matrices
(

0 1
−1 0

)
and

(
0 −1
1 0

)
. We thus had to make

16The identification of complex numbers as geometric objects (points on a plane) was apparently done first in 1799 by
the mathematician Caspar Wessel.
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real axis

imaginary axis

𝑦

−𝑦
𝑥

𝑧

𝑧∗

Figure 5.13: A complex number 𝑧 := 𝑥 + 𝑦𝑖 and its complex conjugate 𝑧∗ = 𝑥 − 𝑦𝑖.

a choice on which matrix to assign to the imaginary number 𝑖. Geometrically, the choice was on
deciding which side of the imaginary axis is up and which is down. To see this, if we had chosen
the second matrix as the imaginary number 𝑖, all our conventions would have the opposite sign in
the imaginary axis of the Argand diagram. As we are comfortable with making such choices from
calculus, we see that there was no loss in generality by making one choice over the other.
Challenge 36 Let 𝑢 and 𝑤 be complex numbers.

(a) Show that (𝑢∗)∗ = 𝑢, (𝑢 + 𝑤)∗ = 𝑢∗ + 𝑤∗, and 𝑢∗𝑤∗ = (𝑢𝑤)∗.
(b) Show that Re 𝑢 = (𝑢 + 𝑢∗)/2 and Im 𝑢 = (𝑢 − 𝑢∗)/(2𝑖).
(c) Show that |𝑢|2 = 𝑢𝑢∗, |𝑢∗| = |𝑢|, |𝑢𝑤| = |𝑢||𝑤|, and |Re 𝑢| ≤ |𝑢| and |Im 𝑢| ≤ |𝑢|.
(d) If 𝑤 is nonzero, then show that 𝑢/𝑤 = (𝑢𝑤∗)/|𝑤|2.

Theorem 49 (Triangle Inequality). If 𝑢 and 𝑤 are complex numbers, then |𝑢 + 𝑤| ≤ |𝑢| + |𝑤|.

Proof. Since 2 Re(𝑢𝑤∗) = 𝑢𝑤∗ + (𝑢𝑤∗)∗ = 𝑢𝑤∗ + 𝑢∗𝑤, and 2 Re(𝑢𝑤∗) ≤ 2 |𝑢𝑤∗|, we have

|𝑢 + 𝑤|2 = (𝑢 + 𝑤)(𝑢∗ + 𝑤∗) = 𝑢𝑢∗ + 𝑢𝑤∗ + 𝑤𝑢∗ + 𝑤𝑤∗ = |𝑢|2 + 2 Re(𝑢𝑤∗) + |𝑤|2

≤ |𝑢|2 + 2 |𝑢𝑤∗| + |𝑤|2 = |𝑢|2 + 2|𝑢||𝑤| + |𝑤|2 = (|𝑢| + |𝑤|)2 .

Since |𝑢+𝑤|2, (|𝑢| + |𝑤|)2 are nonnegative real numbers, we may take square roots on both sides.

Challenge 37
(a) Identify the complex number 𝑤 := 3 − 4𝑖 on an Argand diagram and calculate |𝑤|.
(b) Verify that the complex number 𝑢 :=

√
2

2 +
√

2
2 𝑖 satisfies |𝑢| = 1.

(c) Calculate the product 𝑢𝑤 and use the fact that
√

2 is approximately 1.41 to place the complex
number 𝑢𝑤 on the Argand diagram from part (a).17 What is |𝑢𝑤|?

(d) Let 𝑧1 := 𝑎 + 𝑏𝑖 and 𝑧2 := 𝑐 + 𝑑𝑖 be complex numbers, with |𝑧1| = 1. Show that 𝑧3 := 𝑧1𝑧2
satisfies |𝑧3| = |𝑧2|. Conclude that geometrically, multiplying a complex number 𝑧2 by a
complex number 𝑧1 in a unit circle amounts to rotating the number 𝑧2 on an Argand diagram.

(e) We need two numbers to identify a complex number 𝑧 unambiguously: Re 𝑧 and Im 𝑧. Part
(d) suggests an alternative way. Start with the real number |𝑧|, and then rotate it to where
𝑧 belongs. Show that for each complex number 𝑧, there is some complex number 𝑢𝑧 with

17Here is a way to figure out that
√

2 is approximately 1.41. The number
√

2 is the length of the diagonal of a unit
square, so it is a real number greater than 0. Define a real number 𝜖 > 0, for example 𝜖 := 0.01 and put 𝛼 = 0. Continue to
increment the value of 𝛼 by 𝜖 while 𝛼2 < 2. At some point, 𝛼2 ≥ 2 and we will know that 𝛼 − 𝜖 <

√
2 ≤ 𝛼.
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|𝑢𝑧| = 1 such that 𝑧 = |𝑧|𝑢𝑧 . If 𝑧 = 0, then the complex number 𝑢𝑧 is not unique. For nonzero
𝑧, convince yourself that 𝑢𝑧 is unique (this should be obvious geometrically).

We pause for a word on calculus. A function is said to be complex valued if its outputs are
complex numbers. If a complex valued function’s outputs are always real numbers, then the
function is said to be real valued. If we have a complex valued function 𝑓 that takes complex
numbers as inputs, then 𝑓 is differentiable at 𝑧 if there is a number 𝑓 ′(𝑧) such that

𝑓 (𝑧 + 𝛼) = 𝑓 (𝑧) + 𝑓 ′(𝑧)𝛼 + |𝛼|𝑜(1)

where |𝛼| is the absolute value of the complex number 𝛼 that we drop to 0. How about integration?
If we write a complex valued function 𝑓 as the sum of its real and imaginary parts, then for real
inputs, 𝑓 : 𝑡 ↦→ Re 𝑓 (𝑡) + 𝑖 Im 𝑓 (𝑡). Thus for a function 𝑓 that maps real numbers in the interval
[𝑎, 𝑏] to complex numbers, we have∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 :=
∫ 𝑏

𝑎

Re 𝑓 (𝑡) 𝑑𝑡 + 𝑖
∫ 𝑏

𝑎

Im 𝑓 (𝑡) 𝑑𝑡.

Complex matrices

Now that we know about complex numbers, we need no longer restrict ourselves to matrices
whose entries are real numbers. A complex matrix is a matrix whose entries are complex numbers.
A matrix whose entries are all real numbers may still be considered as a complex matrix, but we
will refer to it as a real matrix. A complex number is an example of a real matrix.

We know how to add, subtract, and multiply two real or complex matrices (with compatible
dimensions). Using matrix inverses, as discussed in Challenge 35, we could even speak of “divid-
ing" a matrix by another. If a matrix 𝐵 is invertible, then 𝐴𝐵−1 is the analogue of dividing a matrix
𝐴 by matrix 𝐵. In fact, we defined the division operator for complex numbers in this manner.

How about the complex conjugation operation? Let 𝑧 := 𝑥 + 𝑦𝑖 be a complex number. It matrix

representation is
(
𝑥 −𝑦
𝑦 𝑥

)
. The complex conjugate of 𝑧 is 𝑧∗ := 𝑥− 𝑦𝑖, whose matrix representation

is
(
𝑥 𝑦
−𝑦 𝑥

)
. The complex conjugate of 𝑧∗ is 𝑧, with the matrix representation given by the first

matrix. How can we transform the first matrix into the second matrix, and vice versa? It appears
that we need to “flip" the matrix entries over its diagonal. We formalize this below.

Let 𝐴 be an 𝑚 × 𝑛 matrix as shown below.

𝐴 :=
©­­­­«
𝐴11 𝐴12 · · · 𝐴1𝑛
𝐴21 𝐴22 · · · 𝐴2𝑛
...

...
. . .

...
𝐴𝑚1 𝐴𝑚2 · · · 𝐴𝑚𝑛

ª®®®®¬
(5.14)

The transpose of matrix 𝐴, denoted 𝐴T, is the matrix of dimension 𝑛 × 𝑚 defined by

𝐴T :=
©­­­­«
𝐴11 𝐴21 · · · 𝐴𝑚1
𝐴12 𝐴22 · · · 𝐴𝑚2
...

...
. . .

...
𝐴1𝑛 𝐴2𝑚 · · · 𝐴𝑚𝑛

ª®®®®¬
.
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For example, for the real matrix 𝑧 :=
(
𝑥 −𝑦
𝑦 𝑥

)
, its transpose matrix is

𝑧T =

(
𝑥 𝑦
−𝑦 𝑥

)
.

So is the analogue of a complex conjugation for matrices the transpose of a matrix? Well, we
have only been working with real matrices so far. We want to talk about the more general class
of complex matrices. A complex matrix is a matrix where each entry is a real matrix of dimension
2×2. We need to take the transpose of each entry (complex conjugation) in addition to transposing
the matrix. This is the conjugate transpose operation.

If 𝐴 is a complex matrix with entries as given in Equation 5.14 above, then its conjugate
transpose is the matrix 𝐴† defined by

𝐴† :=
©­­­­«
𝐴∗11 𝐴∗21 · · · 𝐴∗

𝑚1
𝐴∗12 𝐴∗22 · · · 𝐴∗

𝑚2
...

...
. . .

...
𝐴∗1𝑛 𝐴∗2𝑚 · · · 𝐴∗𝑚𝑛

ª®®®®¬
.

Recall that a complex number 𝑧 is real if 𝑧∗ = 𝑧. A complex matrix 𝐻 is Hermitian if 𝐻† = 𝐻.18
A Hermitian matrix is thus the complex matrix analogue of a real number.

The complex numbers located geometrically in the unit circle in an Argand diagram provided
the role of rotation (Challenge 37). What is the complex matrix analogue? Recall that a complex
number 𝑧 is located geometrically in the unit circle if 𝑧𝑧∗ = 1. A complex matrix 𝑈 is unitary if
𝑈𝑈† = 𝑈†𝑈 = 1.19 A unitary matrix is thus the complex matrix analogue of a complex number in
the unit circle, and it rotates complex vectors (with compatible dimensions).

We can also take the exponential and logarithm of matrices as with real numbers. Recall from
Chapter 4 that the Taylor series of 𝑒𝑥 is given by 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2 + 𝑥3

3! + · · · (This is a variant of
the Taylor polynomial). We can use the Taylor series to define the matrix exponential of an 𝑛 × 𝑛
matrix 𝑋 as the following.

𝑒𝑋 := 1 + 𝑋 + 1
2𝑋

2 + 1
6𝑋

3 + · · ·

Similarly, we can use the Taylor series for log(1 + 𝑥) to define the matrix logarithm of an 𝑛 × 𝑛
matrix 𝑋 as below.

log𝑋 = log(1 + [𝑋 − 1]) = (𝑋 − 1) − 1
2 (𝑋 − 1)2 + 1

3 (𝑋 − 1)3 − 1
4 (𝑋 − 1)4 + · · · .

5.4 Quantum Dynamics

The Schrödinger equation
We return to the topic of dynamics that we began this chapter with and see if we can gain

new insights with what we have developed. The only mechanical system we know of is the
18We can deduce that 𝐻 must be a square matrix.
19Observe that𝑈† is the matrix inverse of𝑈 . Hence a unitary matrix is always a square matrix with an inverse.
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simple harmonic oscillator (which we examined at the beginning of this chapter). It is in some
sense a system that is the perfect setting for the machinery we have developed, for we saw that
an oscillator’s motion in phase space is an ellipse. An ellipse with a suitable choice of units is a
unit circle, so we will discard any unnecessary complexity and simplify even more to consider an
oscillator whose motion in phase space is a unit circle.

The location of an oscillator exists at a point in time, regardless of whether we choose to
catalogue it with some choice of units. Hence the “state" our oscillator is in is like a fruit salad�� 𝑓 〉, which exists in the physical world without us writing down its contents as a vector in some
choice of units to quantify its ingredients. If someone pressed us for the ingredients, then we could
present a representation of

�� 𝑓 〉 as a vector 𝑓 under some choice of units. We will denote the abstract
state of our oscillator at time 𝑡 by |Ψ(𝑡)⟩. If someone insists that we represent the location of our
oscillator with some unit of measurement, we will represent |Ψ⟩ as a complex vector Ψ. Notice we
are using a complex vector. A real vector is an example of a complex vector, and once our eyes are
open to the existence of complex numbers, complex vectors and complex matrices, there is little
reason for us to insist on real numbers.

We want to create a mathematical model for the motion of our oscillator through time. A
complex matrix is built to do just that, since a complex matrix exists to turn a complex vector into
another complex vector. Since a unitary matrix is the analogue of a complex number in the unit
circle, we will say that the state of pendulum at time 𝑡 “evolves" into the state at time 𝑡 + 𝛼 with
the following rule for some unitary matrix𝑈(𝛼).

|Ψ(𝑡 + 𝛼)⟩ = 𝑈(𝛼) |Ψ(𝑡)⟩ (5.15)

At our initial state at time 𝑡 = 0, we have

|Ψ(0)⟩ = 𝑈(0) |Ψ(0)⟩

since there is no time evolution. Thus𝑈(0) = 1. Now𝑈 is a representation of a function that takes
in complex vectors and outputs complex vectors. One thing we want for the motion of our oscillator
is that the motion should be continuous. So we will assume that 𝑈 is continuous. By continuity,
𝑈(𝛼) = 𝑈(0) + 𝑜(1).

Since we are dealing with a physical object, we may eventually want to do things like measure
the oscillator’s displacement away from the origin, and so on. Lengths are represented by real
numbers, or complex numbers 𝑧 such that 𝑧∗ = 𝑧. We saw that the complex matrix analogue of
this is a Hermitian matrix. Let us introduce a Hermitian matrix to the mix.

𝑈(𝛼) = 𝑈(0) + 𝑜(1) = 𝑈(0) − 𝛼𝐻 + 𝑜(𝛼).20

Our decision to put a minus sign in front of 𝐻 is by convention, and could easily be accounted for
(or removed) by replacing 𝐻 with −𝐻.21

But there is a problem here, do you see it? We are thinking of 𝑈(𝛼) as a complex number.
𝑈(0) = 1 and so it corresponds to a real number 1, and the Hermitian matrix 𝐻 also corresponds to
a real number. What we are saying is that the complex number𝑈(𝛼) is a sum of two real numbers

20The symbol 𝑜(𝛼) is the same as |𝛼|𝑜(1) (Section 4.3).
21Notice that −𝐻 is the matrix (−1)𝐻, where −1 is a real number.
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(plus a term negligible with respect to 𝛼 which we can ignore). This assumption is unnecessarily
restrictive. It would be much better to put an 𝑖 in:

𝑈(𝛼) = 1 − 𝑖𝛼𝐻 + 𝑜(𝛼).

We are simply doing the obvious: a complex number is being taken apart into a real part 1 and an
imaginary part −𝛼𝐻, where the minus sign is as convention dictates and can be removed if you
wish by relabeling 𝐻 with −𝐻.

We plug this back into Equation 5.15 and use linearity to get

|Ψ(𝑡 + 𝛼)⟩ = 𝑈(𝛼) |Ψ(𝑡)⟩ = (1 − 𝑖𝛼𝐻 + 𝑜(𝛼)) |Ψ(𝑡)⟩
= |Ψ(𝑡)⟩ − 𝑖𝛼𝐻 |Ψ(𝑡)⟩ + 𝑜(𝛼).

Where have we seen this kind of expression before? In the definition of a derivative! Therefore,

d
d𝑡 |Ψ(𝑡)⟩ = −𝑖𝐻 |Ψ(𝑡)⟩

What is our equation is telling us? It is telling us that the time evolution of the state of our
oscillator is generated by applying a Hermitian matrix 𝐻. That’s good, because 𝐻 corresponds
to a real number! But before we celebrate our victory, let us recall our earlier discussion from
the beginning of this chapter that time translation is generated by energy. Since 𝐻 is generating
time evolution of our oscillator, 𝐻 is actually the total energy of our oscillator with dimension of
energy. Since we are working in phase space, we will call the Hermitian matrix𝐻 the Hamiltonian.
Observe that our equations

𝑈(𝛼) = 1 − 𝑖𝛼𝐻 + 𝑜(𝛼) and |Ψ(𝑡 + 𝛼)⟩ = |Ψ(𝑡)⟩ − 𝑖𝛼𝐻 |Ψ(𝑡)⟩ + 𝑜(𝛼)

do not make sense dimensionally. To fix this we introduce a new dimensionful constant. Since
𝛼 has dimension Time and 𝐻 has dimension Energy, we will cancel them out by introducing a
new constant ℏ, called the reduced Planck constant, with dimension Energy × Time. We go back
and write 𝑈(𝛼) = 1 − 𝑖

ℏ𝛼𝐻 + 𝑜(𝛼), from which we deduce |Ψ(𝑡 + 𝛼)⟩ = |Ψ(𝑡)⟩ − 𝑖𝐻
ℏ 𝛼 |Ψ(𝑡)⟩ + 𝑜(𝛼),

giving us the equation d
d𝑡 |Ψ⟩ = − 𝑖

ℏ𝐻 |Ψ⟩. This is the Schrödinger equation, usually written as the
following.

𝑖ℏ
d
d𝑡 |Ψ⟩ = 𝐻 |Ψ⟩

Time-independent Hamiltonian
We began with the relation |Ψ(𝑡)⟩ = 𝑈(𝑡) |Ψ(0)⟩. If we plug in this relation to the Schrödinger

equation d
d𝑡 |Ψ⟩ = − 𝑖

ℏ𝐻 |Ψ⟩, we have d
d𝑡𝑈(𝑡) |Ψ(0)⟩ = − 𝑖

ℏ𝐻𝑈(𝑡) |Ψ(0)⟩. Now, we are free to choose
the initial state |Ψ(0)⟩, so let’s put |Ψ(0)⟩ = 1 to get the following.

d
d𝑡𝑈(𝑡) = −

𝑖

ℏ
𝐻𝑈(𝑡) (5.16)

Recall that by conservation of energy, our harmonic oscillator had a constant total energy 𝐸, even
though the kinetic and potential energies fluctuated. Similarly, we will assume that the Hamiltonian
𝐻 is not a function of time, that is, 𝐻 is a time-independent Hamiltonian.
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In Equation 5.16 we see that𝑈 ′(𝑡) = − 𝑖
ℏ𝐻𝑈(𝑡), where 𝐻 is a constant. Thus Equation 5.16 says

that the derivative of𝑈 is itself times a constant. Where have we seen such a derivative before? We
have seen such a derivative with the exponential function, where (𝑒 𝑐𝑥)′ = 𝑐𝑒𝑥 for constant 𝑐. We
therefore see that if 𝐻 is a constant, then𝑈(𝑡) = 𝑒−𝑖𝐻𝑡/ℏ.

The equation in 1 dimension
We have been dealing with abstract states |Ψ⟩ thus far. How about if we wish to talk about the

state’s represention in a complex vector Ψ? This is the analogue of a “position" of our oscillator,
and we insist that position functions in the physical world are differentiable so that we can calculate
velocities. Thus we will assume that Ψ is differentiable to get

Ψ(𝑥 − 𝛼) = Ψ(𝑥) − 𝛼
d

d𝑥Ψ(𝑥) + 𝑜(𝛼) =
(
1 − 𝛼

d
d𝑥

)
Ψ(𝑥) + 𝑜(𝛼)

where the minus sign is once again simply conforming to our convention from before, and the
second equality is due to linearity. What does this equation tell us? That to spatially translate our
oscillator from location 𝑥 to 𝑥 − 𝛼, we are applying the operation

(
1 − 𝛼 d

d𝑥
)
, modulo some terms

negligible compared to 𝛼.22 Thus the translation operator 𝑇(𝛼) is given by

𝑇(𝛼) = 1 − 𝛼
d

d𝑥 .

I don’t know about you, but this doesn’t have enough 𝑖’s and ℏ’s for my taste. We know that the
time evolution operator 𝑈(𝛼) is given by 𝑈(𝛼) = 1 − 𝑖

ℏ𝛼𝐻. To maintain consistency with the time
evolution operator, we write

𝑇(𝛼) = 1 − 𝑖

ℏ
𝛼

(
−𝑖ℏ d

d𝑥

)
.

Recall that translation is generated by momentum, and so just like 𝐻 was an energy term, the term
in the brackets is a momentum term. We call 𝑃 := −𝑖ℏ d

d𝑥 the momentum operator, and in fact, as
you should verify, it has the correct dimension of momentum!23

Recall that the mechanical energy of a system is the sum of the kinetic energy 𝑝2

2𝑚 and potential
energy 𝑉 . Since 𝑃2 𝑓 = 𝑃𝑃 𝑓 =

(
−𝑖ℏ d

d𝑥
) (
−𝑖ℏ d

d𝑥
)
𝑓 = −ℏ2 d2

d𝑥2 𝑓 , we have 𝐻 = − ℏ2

2𝑚
d2

d𝑥2 +𝑉 . Plugging
this into the Schrödinger equation for the complex vector Ψ, we obtain the one-dimensional
Schrödinger equation for a particle confined to a line with mass 𝑚 shown below.

𝑖ℏ
𝜕Ψ

𝜕𝑡
= − ℏ2

2𝑚
𝜕2Ψ

𝜕𝑥2 +𝑉Ψ

Since Ψ is a function of not only time 𝑡 but also of space 𝑥, the derivative d
d𝑡 has been replaced with

a partial derivative 𝜕
𝜕𝑡 . We also have a second partial derivative 𝜕2

𝜕𝑥2 from the momentum operator
of the kinetic energy.

22We are doing a translation 𝑥 ↦→ 𝑥 − 𝛼 because we are actually doing a passive transformation, translating our origin
while keeping our oscillator fixed.

23All of this is in one dimension. In three dimensions, we will have 𝑃𝑥 := −𝑖ℏ𝜕𝑥 , 𝑃𝑦 := −𝑖ℏ𝜕𝑦 , and 𝑃𝑧 := −𝑖ℏ𝜕𝑧 .
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Challenge 38 Consider a particle of mass 𝑚 moving on a line located at position 𝑥0 at initial time
𝑡 = 0. Put

𝑈(𝑥, 𝑡) :=
√

𝑚

2𝜋𝑖ℏ𝑡 𝑒
𝑖𝑚(𝑥−𝑥0)2/(2ℏ𝑡).

(a) Show that
𝜕

𝜕𝑥
𝑈 =

𝑖𝑚(𝑥 − 𝑥0)
ℏ𝑡

𝑈.

(b) Show that
𝜕2

𝜕𝑥2𝑈 =
𝑖𝑚

ℏ𝑡
𝑈 − 𝑚

2(𝑥 − 𝑥0)2
ℏ2𝑡2

𝑈.

(c) Show that
𝜕

𝜕𝑡
𝑈 = − 1

2𝑡𝑈 −
𝑖𝑚(𝑥 − 𝑥0)2

2ℏ𝑡2
𝑈.

(d) Conclude that

−𝑖ℏ 𝜕

𝜕𝑡
𝑈 = − ℏ

2𝑚
𝜕2

𝜕𝑥2𝑈

and thus𝑈 is a solution to the one-dimensional Schrödinger equation with 𝑉 = 0.

The circle
The dynamics of an oscillator in phase space is that of an ellipse. Nevertheless, its motion in

space is a mass simply moving back and forth. It seems proper that we look into an object whose
motion is that of a circle. Now, things are made of atoms, and the most basic of those is that of a
hydrogen atom, which consists of an electron orbiting a proton (see Figure 5.17). Not only is the
hydrogen atom the simplest, it is also by far the most abundant type of an atom.

𝑟

proton

electron

Figure 5.17: A hydrogen atom (diagram not to scale).

Both the electron and the proton are charged particles with a charge of −1𝑒 and 𝑒, respectively,
where 𝑒 is the elementary charge. The electric force acting on each other due to the charge is described
by Coulomb’s law. Let us consider two particles with charge 𝑞1 and 𝑞2 that are distance 𝑟 away of
each other. First of all, particles of opposite charges attract and particles of like charges repel, with
their attraction or repulsion proportional to the product of their charges: 𝑞1𝑞2.

The force of attraction/repulsion falls off with distance, and the strength of the force is felt
equally for all charged particle of the same charge on the same distance away from the source
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𝑟𝑞1

Figure 5.18: All charged particles of equal charge on the boundary of a sphere of radius 𝑟 centered
at a point charge 𝑞1 feels the same electric force.

charge.24 Thus all charged particles with charge 𝑞2 in the boundary of a sphere of radius 𝑟 (see
Figure 5.18) are affected equally from the particle 𝑞1 in the the origin. To calculate the drop off in
strength as we increase the distance 𝑟, let us imagine the electric force from charge 𝑞1 as it tries
to reach infinitely far away. As the reach of the force 𝑟 increases, the force must apply equally to
all charges of the same charge that are equidistance from the source charge 𝑞1. Thus as the force
reaches distance 𝑟, the force is sweeping out a volume of a sphere of radius 𝑟. The drop off in force
over distance 𝑟 is the rate of change of the volume of the sphere: in other words, the derivative of
the volume with respect to 𝑟.25

From Challenge 11, we know that the volume of a sphere of radius 𝑟 is given by 4
3𝜋𝑟

3. The
rate of change of the volume of a sphere is then

( 4
3𝜋𝑟

3) ′ = 4𝜋𝑟2 (this is actually the surface area of
a sphere of radius 𝑟; due to the uniform rate of change of an area of a circle in all directions, the
method gives the circumference of a circle of radius 𝑟 as (𝜋𝑟2)′ = 2𝜋𝑟). Therefore, the force law is

𝐹 =
𝑞1𝑞2

4𝜋𝑟2𝜖0
(5.19)

where 𝜖0 is a dimensionful constant that allows us match the units in both sides of the equation.
Equation 5.19 is called Coulomb’s law.

Let us calculate the potential energy for the hydrogen atom, where 𝑞1𝑞2 = −𝑒 · 𝑒 = −𝑒2. We take
the reference point to be infinitely far away from our proton, where the force due to our proton is
zero. The potential energy 𝑉 of the work needed to bring in an electron from infinitely far away to
within distance 𝑟 of a proton is:

𝑉 =

∫ 𝑟

𝑜

−
(
−𝑒2

4𝜋𝜖0

1
𝑥2

)
𝑑𝑥 =

𝑒2

4𝜋𝜖0

∫ 𝑟

𝑜

1
𝑥2 𝑑𝑥 = − 𝑒2

4𝜋𝜖0

1
𝑟
+ 0 = − 𝑒2

4𝜋𝜖0

1
𝑟
.

Now let us bring in some quantum mechanics. The one-dimensional Schrödinger equation

24It would be weird if there was some distinguished axis where the force was stronger or weaker.
25This argument works because we assume all particles of charge 𝑞2 of the same distance 𝑟 away from the source charge

𝑞1 are affected equally. This argument will not work if the force felt depends on the direction of the charge away from 𝑞1
because the rate of change will not be uniform.
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contains a twice spatial derivative for the 𝑥-axis, 𝜕2

𝜕𝑥2 :

𝑖ℏ
𝜕Ψ

𝜕𝑡
= − ℏ2

2𝑚
𝜕2

𝜕𝑥2Ψ +𝑉Ψ.

The Schrödinger equation in three dimensions is given by the following, where the Laplacian of Ψ
∇2Ψ = 𝜕2Ψ

𝜕𝑥2 + 𝜕2Ψ
𝜕𝑦2 + 𝜕2Ψ

𝜕𝑧2 takes the place of 𝜕2Ψ
𝜕𝑥2 .26

𝑖ℏ
𝜕Ψ

𝜕𝑡
= − ℏ2

2𝑚∇
2Ψ +𝑉Ψ

For the hydrogen atom, the mass term is now the mass of the electron 𝑚𝑒 , and the potential energy
𝑉 = − 𝑒2

4𝜋𝜖0
1
𝑟 . Therefore, the Schrödinger equation for the hydrogen atom is

𝑖ℏ
𝜕Ψ

𝜕𝑡
= − ℏ2

2𝑚𝑒
∇2Ψ − 𝑒2

4𝜋𝜖0

1
𝑟
Ψ.

The table below contain the dimensionful quantities of the equation, with the (most probable)
radius of the hydrogen atom denoted by the symbol 𝑎0. The letter L stands for the dimension
Length, the letter M stands for the dimension Mass, and the letter T stands for the dimension Time.

Variable Dimension Rough Value
Radius of hydrogen atom 𝑎0 L 10−10 m
Reduced Planck constant ℏ ML2/T ??? J·s
Electron mass 𝑚𝑒 M 10−30 kg
Coulomb term 𝑒2

4𝜋𝜖0
ML3/T2 10−28 N·m2

Challenge 39
(a) Show that it is not possible to find a combination of integers 𝑝 and 𝑞 such that the equation

𝑎0 = 𝛽 · (𝑚𝑒)𝑝
(
𝑒2

4𝜋𝜖0

) 𝑞
holds, where 𝛽 is some dimensionless constant. Hence the constant ℏ is indispensable.

(b) The simplest formula for expressing ℏ using the other three variables is

ℏ = 𝛾 · 𝑎𝑥0 · (𝑚𝑒)𝑦 ·
(
𝑒2

4𝜋𝜖0

) 𝑧
(5.20)

where 𝛾 is some dimensionless constant. Find integers 𝑥, 𝑦, and 𝑧 that satisfy the formula.
(c) Very rough values of 𝑎0, 𝑚𝑒 , and the Coulomb term 𝑒2

4𝜋𝜖0
in the nearest powers of 10 are given

in the table above.27 For example, 5.29 × 10−11 m would be rounded up to 10−10 m. Ignoring
the dimensionless constant 𝛾 for now, use the values to give a rough estimate of ℏ in powers

26Since energy is a scalar quantity, we cannot replace 𝜕2Ψ
𝜕𝑥2 with the vector

(
𝜕2Ψ
𝜕𝑥2

𝜕2Ψ
𝜕𝑦2

𝜕2Ψ
𝜕𝑧2

) 𝑡
.

27IRecall that 1 N (newton) is defined as 1 kg·m·s−2 and 1 J (joule) is defined as 1 kg·m2·s−2.



DRAFT
5.4. QUANTUM DYNAMICS 109

of 10.28 The value of ℏ is so tiny for us that we can ignore the dimensionless constant 𝛾. The
actual value of ℏ is about 1.05457× 10−34 J·s. Max Planck first proposed the constant ℎ := 2𝜋ℏ
and calculated its value in 1901.

Since ℏ is so tiny, the Schrödinger equation appears to describe a world that is imperceptible.
Can this equation have any relevance to us?

Waves and superposition
Around the time of the invention of calculus, there was a controversy over the nature of light.

Christiaan Huygens argued that light was a wave, while Newton argued that light must be a
particle. Although Newton initially had the upper hand, Thomas Young’s experiments in 1801
seemed to settle the question in favor of Huygens. Subsequently, there was a great deal of effort
to try and bridge the wave nature of light with that of ordinary particle dynamics. A key result of
such investigations is one of the crowning jewels of mathematical physics of the 19th Century: the
Hamilton–Jacobi equation

−𝜕𝑆
𝜕𝑡

= 𝐻

(
𝑥, 𝑝 := 𝜕𝑆

𝜕𝑥
, 𝑡

)
. (5.21)

The function 𝐻 is the Hamiltonian of the system, with momentum defined by 𝑝 := 𝜕𝑆
𝜕𝑥 . It is equiv-

alent to Newton’s second law, but derived using the machinery of infinite dimensional calculus.
Can our own investigations lead to any illumination on this issue? Let us first investigate what

we can about wave phenomena. As with most physical phenomena, we will need a differential
equation to describe waves. This equation, which we will call the wave equation, will model how a
wave changes over time.

𝑥

𝑦 𝑓 (𝑥)

𝑥0

𝑣

𝑥0 + 𝑣𝑡

𝑓 (𝑥 − 𝑣𝑡)

Figure 5.22: A wave traveling at speed 𝑣 to the right.

Imagine a wave which we represent by a function 𝑓 that is traveling to the right at some speed
𝑣 (see Figure 5.22). To simplify matters, we will assume an idealized situation in which the wave
does not widen or drop over time. We could imagine a water wave, and the number 𝑓 (𝑥0 , 𝑡0) will
tell us how much water is elevated in the 𝑥-coordinate 𝑥0 at time 𝑡0. Let us denote the initial wave
at time 𝑡 = 0 by the function 𝑔, that is, 𝑔 : 𝑥 ↦→ 𝑓 (𝑥, 0). After time 𝑡, the wave will have travelled
to the right by distance 𝑣𝑡. Thus all the numbers 𝑔(𝑥)will have shifted to the right by 𝑣𝑡. Suppose
an object is standing still, but we have shifted all the 𝑥-coordinates to the left. Then the object
will have shifted to the right! Similarly, we can shift the number 𝑔(𝑥) to the right by a substitution
shifting all the 𝑥-coordinates to the left: 𝑥 ↦→ 𝑥 − 𝑣𝑡. Therefore, after time 𝑡,

𝑓 (𝑥, 𝑡) = 𝑔(𝑥 − 𝑣𝑡).
28We will return to this this later in Challenge 46.
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For a wave moving to the left, the same reasoning gives 𝑓 (𝑥, 𝑡) = 𝑔(𝑥 + 𝑣𝑡). Now, if we throw a
pebble to a pool of water and take a cross section, waves are traveling not only to the left, but also to
the right at the same time. So our wave equation must satisfy both cases. In fact, if we imagine the
pebble thrown into a pool of water and take a cross section, we not only see two waves dispersing
away, but there are multiple of different sizes at the same time! Therefore, our wave equation must
allow not just the sum of the functions 𝑔(𝑥 − 𝑣𝑡) and 𝑔(𝑥 + 𝑣𝑡), but each of the linear combination:

𝑎 · 𝑔(𝑥 − 𝑣𝑡) + 𝑏 · 𝑔(𝑥 + 𝑣𝑡).

This looks like a tall order, can we do it? First, because we want a differential equation that
describes the dynamics of the wave over time, the equation will involve some time derivative of 𝑓 .
This causes a problem, because the chain rule tells us that the time derivative of 𝑓 (𝑥, 𝑡) := 𝑔(𝑥 − 𝑣𝑡)
and the time derivative of 𝑓 (𝑥, 𝑡) := 𝑔(𝑥 + 𝑣𝑡)will differ by a minus sign. But we need both cases to
be solutions! Thus one time derivative will not be sufficient: in order to make both functions work
as solutions to our wave equation, we must take two time derivatives of 𝑓 .

Let us crank out the time derivatives. Since we know that the twice time derivatives of 𝑔(𝑥−𝑣𝑡)
and 𝑔(𝑥 + 𝑣𝑡)will equal, we will only do it for the former. By the chain rule,

𝜕 𝑓

𝜕𝑡
= −𝑣𝑔′(𝑥 − 𝑣𝑡), 𝜕2 𝑓

𝜕𝑡2
= 𝑣2𝑔′′(𝑥 − 𝑣𝑡).

We see that there is a twice spatial derivative involved. Now,

𝜕 𝑓

𝜕𝑥
= 𝑔′(𝑥 − 𝑣𝑡), 𝜕2 𝑓

𝜕𝑥2 = 𝑔′′(𝑥 − 𝑣𝑡).

Therefore, the one-dimensional wave equation for a wave with speed 𝑣 is given by the following.

𝜕2 𝑓

𝜕𝑡2
= 𝑣2 𝜕

2 𝑓

𝜕𝑥2 (5.23)

This is a linear differential equation because linear combinations of solutions to the wave equation
are also solutions.29

Now let us examine the one-dimensional Schrödinger equation. To simplify, let us consider a
free particle, which is a particle with no forces acting on it. Then 𝑉 = 0 and so the equation is
simply

− 𝑖
ℏ
𝜕Ψ

𝜕𝑡
=

1
2𝑚

𝜕2Ψ

𝜕𝑥2 .30

This doesn’t really look like a wave equation because we are missing a derivative with respect to
time. But check this out, remember the Schrödinger equation for abstract states |Ψ⟩? It was

d
d𝑡 |Ψ⟩ = −

𝑖

ℏ
𝐻 |Ψ⟩ . (5.24)

29I encourage you to verify this by using the derivative rules to check that ℎ : 𝑡 ↦→ 𝑎𝑔(𝑥 − 𝑣𝑡) + 𝑏𝑔(𝑥 + 𝑣𝑡) satisfies the
wave equation 𝜕2ℎ

𝜕𝑡2
= 𝑣2 𝜕2ℎ

𝜕𝑥2 . This should be simple, for (partial) derivatives are linear!
30We have divided both sides by the nonzero constant ℏ2 and multiplied both sides by −1.
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We see that the term − 𝑖
ℏ is like a time derivative! So we could consider the Schrödinger equation

for the free particle to be a wave equation. Because of this connection, the object Ψ is called a
wavefunction. In fact, just like the wave equation, the general Schrödinger equation 5.24 is a linear
differential equation. Indeed, derivatives are linear and (Hermitian) matrices are linear, so for two
states |Ψ1⟩, |Ψ2⟩, and scalars 𝑎, 𝑏:

d
d𝑡

(
𝑎 |Ψ1⟩ + 𝑏 |Ψ2⟩

)
= 𝑎

d
d𝑡 |Ψ1⟩ + 𝑏

d
d𝑡 |Ψ2⟩ = −𝑎

𝑖

ℏ
𝐻 |Ψ1⟩ − 𝑏

𝑖

ℏ
𝐻 |Ψ2⟩ = −

𝑖

ℏ
𝐻

(
𝑎 |Ψ1⟩ + 𝑏 |Ψ2⟩

)
which verifies that linear combinations of solutions to the Schrödinger equation are also solutions.
Linear combinations are also called superpositions. Linear equations like the wave equation and
the Schrödinger equation are said to obey the superposition principle.

We started this section by trying to upgrade the mathematical apparatus for describing a particle
(a simple oscillator) and got an equation that has so much in common with waves! The distinction
between particles and waves are so blurred, it is no wonder that scientists were debating about
whether light was a wave or a particle.
Challenge 40 Recall that the wavefunction Ψ is a complex vector. Let us take the special case
where Ψ is a complex valued function of position 𝑥 and time 𝑡 (like a wave, but complex). Put
Ψ := 𝜌𝑒 𝑖𝜔/ℏ where 𝜌 is a real valued function of 𝑥 and 𝑡 that determines the scaling and 𝜔 is some
real valued function of 𝑥 and 𝑡 that determines the rotation.

(a) Use the product rule to show that

𝜕Ψ

𝜕𝑡
=

(
¤𝜌 + 𝑖 ¤𝜔

ℏ
𝜌

)
𝑒 𝑖𝜔/ℏ ,

𝜕Ψ

𝜕𝑥
=

(
𝜌′ + 𝑖𝜔

′

ℏ
𝜌

)
𝑒 𝑖𝜔/ℏ.

(b) Apply the product rule on 𝜕Ψ
𝜕𝑥 once more to show that

𝜕2Ψ

𝜕𝑥2 =

(
𝜌′′ + 2𝑖

𝜌′𝜔′

ℏ
+ 𝑖𝜔

′′

ℏ
𝜌 − (𝜔

′)2
ℏ2 𝜌

)
𝑒 𝑖𝜔(𝑥,𝑡)/ℏ.

(c) The one-dimensional Schrödinger equation states that 𝑖ℏ 𝜕Ψ
𝜕𝑡 = − ℏ2

2𝑚
𝜕2Ψ
𝜕𝑥2 + 𝑉Ψ. Plug in your

answers from part (a) and part (b) into the one-dimensional Schrödinger equation, divide
both sides by 𝑒 𝑖𝜔/ℏ and do all the multiplication by 𝑖ℏ (on the left side) and multiplication by
ℏ2

2𝑚 (on the right side) to obtain the equation

𝑖ℏ ¤𝜌 − 𝜌 ¤𝜔 = − ℏ2

2𝑚 𝜌′′ − 𝑖 ℏ
𝑚
𝜌′𝜔′ − 𝑖 ℏ

2𝑚𝜔′′𝜌 + 1
2𝑚 (𝜔

′)2𝜌 +𝑉𝜌. (5.25)

(d) Equation 5.25 from part (c) is far too complicated to reason with and it looks nothing like the
Schrödinger equation it is supposed to be! But notice how all the ℏ’s in the bottom of the
fractions (denominators) have magically disappeared. Since ℏ is so tiny, we might as well as
drop it. Take ℏ→ 0 to obtain a much simpler equation and then divide through by 𝑅 to get
the following.31

−𝜕𝜔
𝜕𝑡

=
1

2𝑚

(
𝜕𝜔

𝜕𝑥

)2

+𝑉(𝑥) (5.26)

31What does it mean to drop a constant to 0? Suppose we were measuring length by the height of a building ℎ and
we took ℎ → 0. That means we are scaling up everything much larger than the building, while taking the length of our
building and everything of roughly the same size or smaller to be negligible. Thus by taking ℏ → 0, we are taking the
constant ℏ to be negligible.
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(e) The right side of Equation 5.26 from part (d) is a Hamiltonian (total energy) with momentum
𝑝 := 𝜕𝜔

𝜕𝑥 . Conclude that

−𝜕𝜔
𝜕𝑡

= 𝐻

(
𝑥, 𝑝 := 𝜕𝜔

𝜕𝑥
, 𝑡

)
. (5.27)

Have we seen Equation 5.27 before? It is simply the Hamilton–Jacobi equation (Equation 5.21)!
We see that classical mechanics is a special case of this new theory in the limit ℏ → 0. Thus
in situations of scale ℏ, we need to use Schrödinger’s equation, but in situations involving scales
where ℏ is negligible, then we can use classical mechanics. Recall that the value of ℏ is about
1.05457 × 10−34 J·s, a negligible amount indeed! Such a value can be considered practically zero in
our dally lives.

This is a theory of an extremely tiny world, a world where our classical intuition in trying to
distinguish between waves and particles are doomed to a failure. This is the realm of quantum
mechanics. Nevertheless, this theory of tiny particles is used everywhere. Everyone carries around
in their hands or their pockets a proof that the Schrödinger equation works.

5.5 Trigonometry

In the previous section, we saw that the dynamics of a quantum particle was governed by a
unitary matrix 𝑈 , which rotates complex vectors. We now consider the simplest case of a time-
independent hamiltonian with 𝐻 := ℏ so that 𝑈 = 𝑒−𝑖𝑡 . We take 𝑥 := −𝑡 and examine the function
𝑒 𝑖𝑥 which rotates complex numbers.

Radians
From Challenge 37, we know that we can obtain any complex number in the unit circle by

rotating the complex number 1. We begin by rotating the complex number 1 into the number 𝑒 𝑖𝑥
on the unit circle, with the rotation starting from the complex number 1 counterclockwise.

Recall that the circumference of a circle has length 2𝜋. Each angle of rotation 𝑥 corresponds
uniquely to a point on the unit circle, which in turn corresponds uniquely to a length in the interval
[0, 2𝜋) (see Figure 5.28). It is therefore natural to measure angles of rotation as lengths such that
a full 360 degree rotation is defined to be 2𝜋. This way of measuring angles is called radians.
A right angle in radians is thus 𝜋/2 as we need four right angles to cover the circumference of a
circle. Similarly, the angle corresponding to a semicircle is 𝜋 since we need two of them to cover
the circumference of a circle. Using radians to measure rotation, 𝑒2𝜋𝑖 is the complex number 1 (a
rotation of 360 degrees), 𝑒𝜋𝑖 is the complex number -1 (a rotation of 180 degrees), and 𝑒 𝑖𝜋/2 is the
complex number 𝑖.

By convention a rotation by a negative angle −𝑥 is a rotation by angle 𝑥 clockwise from the
complex number 1 (see Figure 5.29). As this is geometrically a reflection across the real axis, it is
algebraically equivalent to the complex conjugation operation. Therefore, (𝑒 𝑖𝑥)∗ = 𝑒−𝑖𝑥 .

Trigonometric functions
We saw that the complex number 𝑒 𝑖𝑥 on the unit circle is fully specified by the angle 𝑥 (measured

in radians). We also know that each complex number 𝑧 is fully specified by the two real numbers
Re 𝑧 and Im 𝑧. (Shown in Figure 5.30.)
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real axis

imaginary axis

𝑒 𝑖𝑥

𝑥

0 2𝜋𝑥

Figure 5.28: An angle of rotation 𝑥 uniquely corresponds to a length on the interval [0, 2𝜋).

real axis

imaginary axis

𝑒 𝑖𝑥

𝑥 real axis

imaginary axis

𝑒−𝑖𝑥

−𝑥

Figure 5.29: Argand diagram of 𝑒 𝑖𝑥 (left) and 𝑒−𝑖𝑥 (right).

real axis

imaginary axis

𝑟

𝑟−𝑟

−𝑟

(Re 𝑟𝑒 𝑖𝑥 , Im 𝑟𝑒 𝑖𝑥)

𝑥

Figure 5.30: A complex number 𝑟𝑒 𝑖𝑥 can be specified by Re 𝑟𝑒 𝑖𝑥 and Im 𝑟𝑒 𝑖𝑥 or angle 𝑥.

By Challenge 36, Re 𝑧 = 1
2 (𝑧 + 𝑧∗) and Im 𝑧 = 1

2𝑖 (𝑧 − 𝑧∗) and so

Re 𝑒 𝑖𝑥 = 𝑒 𝑖𝑥 + (𝑒 𝑖𝑥)∗
2 Im 𝑒 𝑖𝑥 =

𝑒 𝑖𝑥 − (𝑒 𝑖𝑥)∗
2𝑖 .

As the number 𝑒 𝑖𝑥 is also identifiable by the angle 𝑥, it will be convenient to define the above using
just 𝑥. Since (𝑒 𝑖𝑥)∗ = 𝑒−𝑖𝑥 , we arrive at the following definition.

Definition 50. The cosine function cos and the sine function sin are defined by

cos 𝑥 =
𝑒 𝑖𝑥 + 𝑒−𝑖𝑥

2 sin 𝑥 =
𝑒 𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖 .

The tangent function tan is defined by tan : 𝑥 ↦→ sin 𝑥/cos 𝑥.
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Challenge 41
(a) Verify that cosine is an even function and sine is an odd function.
(b) Calculate the values of the cosine, sine, and tangent functions for the angles 0,𝜋/6,𝜋/4,𝜋/3,

and 𝜋/2. To find the values for the angles 𝜋/6 and 𝜋/3, apply the Pythagorean theorem to
the equilateral triangle in Figure 5.31 (an equilateral triangle is a triangle whose sides are all
equal; each of its three angles are 𝜋/3).

1

1

Figure 5.31: A bisected equilateral triangle of side length 1 inscribed in a unit circle.

By definition the following equation, called Euler’s formula, holds.

𝑒 𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

Rotating the number 1 by angle 𝜋 gives the number −1. This is Euler’s identity

𝑒 𝑖𝜋 = −1.

The Pythagorean theorem tells us that (Re 𝑒 𝑖𝑥)2 + (Im 𝑒 𝑖𝑥)2 = 1, which is equivalent to

cos2 𝑥 + sin2 𝑥 = 1

where cos2 𝑥 := (cos 𝑥)2 and sin2 𝑥 := (sin 𝑥)2.
Challenge 42

(a) Check that the following trigonometric derivatives hold.

(cos 𝑥)′ = − sin 𝑥 (sin 𝑥)′ = cos 𝑥 (tan 𝑥)′ = 1
cos2 𝑥

(b) Use the Taylor series for 𝑒 𝑖𝑥 to obtain the following Taylor series for cos and sin.32

cos 𝑥 = 1 − 𝑥
2

2! +
𝑥4

4! −
𝑥6

6! + · · · sin 𝑥 = 𝑥 − 𝑥
3

3! +
𝑥5

5! −
𝑥7

7! + · · ·

Challenge 43 Use Euler’s formula to check that following identities hold.

cos
(
𝑥 + 𝜋

2

)
= − sin 𝑥 sin

(
𝑥 + 𝜋

2

)
= cos 𝑥

cos
(
𝑥 − 𝜋

2

)
= sin 𝑥 sin

(
𝑥 − 𝜋

2

)
= − cos 𝑥

cos
(𝜋

2 − 𝑥
)
= sin 𝑥 sin

(𝜋
2 − 𝑥

)
= cos 𝑥

32This part uses material from Chapter 4.
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[Hint: since 𝑒 𝑖𝜋/2 = 𝑖, we know that 𝑒 𝑖(𝑥+𝜋/2) = 𝑖 cos 𝑥 − sin 𝑥.]
A rotation of a nonzero complex number 𝑧 by angle (𝑥1 + 𝑥2) is achieved by taking the product

𝑧 · 𝑒 𝑖(𝑥1+𝑥2). The same rotation can be achieved by rotating it first by angle 𝑥1 with 𝑧 · 𝑒 𝑖𝑥1 and then
rotating the result by angle 𝑥2 by taking a second product (𝑧 · 𝑒 𝑖𝑥1) · 𝑒 𝑖𝑥2 . Therefore,

𝑒 𝑖(𝑥1+𝑥2) = 𝑒 𝑖𝑥1 𝑒 𝑖𝑥2 . (5.32)

By Euler’s formula,

𝑒 𝑖𝜃1 𝑒 𝑖𝜃2 = (cos𝜃1 + 𝑖 sin𝜃1) (cos𝜃2 + 𝑖 sin𝜃2)
= cos𝜃1 cos𝜃2 − sin𝜃1 sin𝜃2 + 𝑖(cos𝜃1 sin𝜃2 + sin𝜃1 cos𝜃2).

Since the above must equal 𝑒 𝑖(𝑥1+𝑥2), we see that

cos(𝑥1 + 𝑥2) = cos 𝑥1 cos 𝑥2 − sin 𝑥1 sin 𝑥2 sin(𝑥1 + 𝑥2) = cos 𝑥1 sin 𝑥2 + sin 𝑥1 cos 𝑥2.

These are the trigonometric addition formulas.
Challenge 44

(a) Obtain the trigonometric addition formula for cosines by taking the derivative of both sides
of the addition formula for sines with respect to 𝑥1. Obtain the addition formula for sines
from the addition formula for cosines.

(b) Use the fact that the cosine function is even and the sine function is odd to find the formulas
for cos(𝑥1 − 𝑥2) and sin(𝑥1 − 𝑥2). Each formula can be combined with the corresponding
addition formula and written as follows.

cos(𝑥1 ± 𝑥2) = cos 𝑥1 cos 𝑥2 ∓ sin 𝑥1 sin 𝑥2 sin(𝑥1 ± 𝑥2) = cos 𝑥1 sin 𝑥2 ± sin 𝑥1 cos 𝑥2

(c) Deduce the double angle formulas:

cos(2𝑥) = cos2 𝑥 − sin2 𝑥 sin(2𝑥) = 2 sin 𝑥 cos 𝑥. (5.33)

(d) Use the double angle formula for cosine with the Pythagorean theorem to show that

cos2 𝑥 =
1 + cos(2𝑥)

2 sin2 𝑥 =
1 − cos(2𝑥)

2 .

(e) Use part (b) to obtain the following formulas:

cos 𝑥1 cos 𝑥2 =
1
2 [cos(𝑥1 + 𝑥2) + cos(𝑥1 − 𝑥2)] ,

sin 𝑥1 sin 𝑥2 =
1
2 [− cos(𝑥1 + 𝑥2) + cos(𝑥1 − 𝑥2)] ,

cos 𝑥1 sin 𝑥2 =
1
2 [sin(𝑥1 + 𝑥2) + sin(𝑥1 − 𝑥2)] .

(f) Applying the well-ordering principle to Equation 5.32 gives us the fact that for each natural
number 𝑛, (𝑒 𝑖𝑥)𝑛 = 𝑒 𝑖𝑛𝑥 . Use it to obtain de Moivre’s formula:

(cos 𝑥 + 𝑖 sin 𝑥)𝑛 = cos(𝑛𝑥) + 𝑖 sin(𝑛𝑥).
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We obtain a useful relation between an angle of a triangle with the three side lengths. Suppose
we have a triangle whose side lengths are 𝑎, 𝑏, and 𝑐. Furthermore, suppose we know the angle 𝑥
(in radians) between the sides of length 𝑎 and 𝑏 (see left diagram in Figure 5.34). Place the axis such
that the side of length 𝑎 form the 𝑥-axis with the vertex with angle 𝑥 as the origin and such tht the
entirety of the triangle lies above the 𝑥-axis (see middle diagram in Figure 5.34). By construction,
one of the vertices will be the complex number 𝑎 and the other will be the complex number 𝑏𝑒 𝑖𝑥 .

𝑎

𝑏 𝑐

𝑥
(𝑎, 0)

𝑏𝑒 𝑖𝑥

𝑐

𝑥

(𝑏 cos 𝑥, 𝑏 sin 𝑥)

𝑐

𝑥

Figure 5.34: Cosine Law

The Pythagorean theorem gives the following.

𝑐2 = (𝑎 − 𝑏 cos 𝑥)2 + (𝑏 sin 𝑥)2 = 𝑎2 − 2𝑎𝑏 cos 𝑥 + 𝑏2 cos2 𝑥 + 𝑏2 sin2 𝑥

= 𝑎2 − 2𝑎𝑏 cos 𝑥 + 𝑏2(cos2 𝑥 + sin2 𝑥) = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝑥

The formula 𝑐2 = 𝑎2+ 𝑏2−2𝑎𝑏 cos 𝑥 is called the cosine law. Observe that if 𝑥 = 𝜋/2 (a right angle),
then we recover the Pythagorean theorem.

To wrap off our discussion of trigonometric functions, we calculate some useful integrals. First,
we calculate the integral

∫
𝑥 cos(𝑎𝑥) 𝑑𝑥. This is an integral of a product, so we use integration by

parts:
∫
𝑓 𝑔′ = 𝑓 𝑔 −

∫
𝑓 ′𝑔 with 𝑓 (𝑥) = 𝑥 and 𝑔′(𝑥) = cos(𝑎𝑥). Then 𝑔(𝑥) = 1

𝑎 sin(𝑎𝑥) and we have∫
𝑥 cos(𝑎𝑥) 𝑑𝑥 = 𝑥

(
1
𝑎

sin(𝑎𝑥)
)
−

∫
1
𝑎

sin(𝑎𝑥) 𝑑𝑥 =
1
𝑎

∫
− sin(𝑎𝑥) 𝑑𝑥 + 𝑥

𝑎
sin(𝑎𝑥)

=
1
𝑎

(
1
𝑎

cos(𝑎𝑥)
)
+ 𝑥
𝑎

sin(𝑎𝑥) + 𝑐 = 1
𝑎2 cos(𝑎𝑥) + 𝑥

𝑎
sin(𝑎𝑥) + 𝑐.

Similarly, we can calculate the integral
∫
𝑥 sin(𝑎𝑥) 𝑑𝑥 using integration by parts with 𝑓 (𝑥) = 𝑥 and

𝑔′(𝑥) = sin(𝑎𝑥) to get∫
𝑥 sin(𝑎𝑥) 𝑑𝑥 = 𝑥

(
−1
𝑎

cos(𝑎𝑥)
)
−

∫
−1
𝑎

cos(𝑎𝑥) 𝑑𝑥 =
1
𝑎

∫
cos(𝑎𝑥) 𝑑𝑥 − 𝑥

𝑎
cos(𝑎𝑥)

=
1
𝑎

(
1
𝑎

sin(𝑎𝑥)
)
− 𝑥
𝑎

cos(𝑎𝑥) + 𝑐 = 1
𝑎2 sin(𝑎𝑥) − 𝑥

𝑎
cos(𝑎𝑥) + 𝑐.

Challenge 45 Let 𝑎 and 𝑏 be real numbers such that 𝑎2 ≠ 𝑏2. Show that
(a) ∫

cos(𝑎𝑥) cos(𝑏𝑥) 𝑑𝑥 =
sin([𝑎 + 𝑏]𝑥)

2(𝑎 + 𝑏) + sin([𝑎 − 𝑏]𝑥)
2(𝑎 − 𝑏) + 𝑐,

[Hint: cos(𝑎𝑥) = (𝑒 𝑖𝑎𝑥 + 𝑒−𝑖𝑎𝑥)/2.]
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(b) ∫
sin(𝑎𝑥) sin(𝑏𝑥) 𝑑𝑥 = −sin([𝑎 + 𝑏]𝑥)

2(𝑎 + 𝑏) + sin([𝑎 − 𝑏]𝑥)
2(𝑎 − 𝑏) + 𝑐,

(c) ∫
cos(𝑎𝑥) sin(𝑏𝑥) 𝑑𝑥 = −cos([𝑎 + 𝑏]𝑥)

2(𝑎 + 𝑏) − cos([𝑎 − 𝑏]𝑥)
2(𝑎 − 𝑏) + 𝑐.

(d) Conclude that the following hold for distinct positive integers 𝑚 and 𝑛:∫ 𝜋

−𝜋
cos(𝑚𝑥) cos(𝑛𝑥) 𝑑𝑥 = 0

∫ 𝜋

−𝜋
sin(𝑚𝑥) sin(𝑛𝑥) 𝑑𝑥 = 0

∫ 𝜋

−𝜋
cos(𝑚𝑥) sin(𝑛𝑥) 𝑑𝑥 = 0.

[Hint: the cosine function is an even function and the sine function is odd.]
(e) Justify each step of the following calculation.∫

cos(𝑎𝑥) sin(𝑎𝑥) 𝑑𝑥 =

∫
sin(2𝑎𝑥)

2 𝑑𝑥 = −cos(2𝑎𝑥)
4𝑎 + 𝑐 = 2 sin2(𝑎𝑥) − 1

4𝑎 + 𝑐 = sin2(𝑎𝑥)
2𝑎 + 𝑐

Show that ∫
cos2(𝑎𝑥) 𝑑𝑥 =

𝑥

2 +
sin(𝑎𝑥) cos(𝑎𝑥)

2𝑎 + 𝑐∫
sin2(𝑎𝑥) 𝑑𝑥 =

𝑥

2 −
sin(𝑎𝑥) cos(𝑎𝑥)

2𝑎 + 𝑐

and conclude that the following hold for each positive integer 𝑛.∫ 𝜋

−𝜋
cos2(𝑛𝑥) 𝑑𝑥 = 𝜋

∫ 𝜋

−𝜋
sin2(𝑛𝑥) 𝑑𝑥 = 𝜋

∫ 𝜋

−𝜋
cos(𝑛𝑥) sin(𝑛𝑥) 𝑑𝑥 = 0

(f) Let 𝑚 and 𝑛 be integers. Show that if 𝑚 = −𝑛 then
∫ 𝜋

−𝜋 𝑒
𝑖𝑚𝑥𝑒 𝑖𝑛𝑥 𝑑𝑥 = 2𝜋. Furthermore, show

that if 𝑚 ≠ −𝑛 then
∫ 𝜋

−𝜋 𝑒
𝑖𝑚𝑥𝑒 𝑖𝑛𝑥 𝑑𝑥 = 0.

Challenge 46 Let us imagine the hydrogen atom as an electron rotating counterclockwise in a
constant speed around a proton (see Figure 5.35).

(a) Let 𝑟 be the radius of the electron’s circular motion and let 𝑇 be the time needed for the
electron to do one full rotation. Define the angular velocity of the electron by 𝜔 := 2𝜋/𝑇.
What does the constant 𝜔 represent?

(b) Let us assume that at time 𝑡 = 0 the electron was located at the real number 𝑟 on the Argand
diagram. The position function 𝑝 of the electron over time 𝑡 is then 𝑝 : 𝑡 ↦→ 𝑟𝑒 𝑖𝜔𝑡 . Calculate the
(complex-valued) velocity function 𝑣 := 𝑝′ and the (complex-valued) acceleration function
𝑎 := 𝑣′. The speed of the electron is then |𝑣|. Verify that |𝑣| = 𝑟𝜔 and |𝑎| = |𝑣|2/𝑟. Notice that
even though the electron has constant speed, |𝑎| is nonzero!

(c) Use Coulomb’s law and Newton’s second law |𝐹| = 𝑚|𝑎| to conclude that 𝑒2

4𝜋𝜖0𝑟2 = 𝑚
|𝑣|2
𝑟 .
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real axis

imaginary axis

𝑟

proton

electron

Figure 5.35: A hydrogen atom on an Argand diagram with the origin fixed at the proton’s position.

(d) The angular momentum from the origin of a point particle rotating in a circle of radius 𝑟 at
constant speed |𝑣| is given by 𝐿 = 𝑚|𝑣|𝑟.33 Notice that the constant ℏ has dimensions of
angular momentum. We have not yet given a definition of ℏ. By dimensional considerations,
the constant can represent an angular momentum of something. In the quantum context, the
simplest possible something would be an electron rotating around a proton. We thus define
ℏ as the angular momentum of the electron in our model of the hydrogen atom. Conclude
that 𝑟 =

4𝜋𝜖0ℏ2

𝑒2𝑚
. If we switch the variable names with 𝑟 ↦→ 𝑎0 and 𝑚 ↦→ 𝑚𝑒 we obtain our

guess from Challenge 39. In particular, the dimensionless constant is 1.

Fourier series
Recall that the one-dimensional Schrödinger equation for a free particle is

−𝑖 2𝑚
ℏ

𝜕Ψ

𝜕𝑡
=

𝜕2Ψ

𝜕𝑥2 .

Let us solve a simpler version of this equation. Replace Ψ with a real valued function 𝑢 that takes
as input position 𝑥 ∈ [0, 1] and time 𝑡 ≥ 0. Ignoring all the constants, the imaginary number 𝑖, and
the negative sign, the partial differential equation takes the form

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2

which is a heat equation,34 where 𝑢 is the temperature at position 𝑥 at time 𝑡. We can imagine this
equation describes the temperature of a thin metal rod.

Let us assume that 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 and solve the heat equation for 𝑢. We begin by finding one
simple solution. Suppose 𝑢 is a product of two function 𝑋 and 𝑇, which are functions of position
𝑥 and position 𝑡, respectively. That is, we will try a solution of the form 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡).35

33We will derive this quantity later (Challenge ??).
34We will obtain the heat equation at the end Section 6.6.
35This technique is called separation of variables.
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Plugging this guess into the heat equation gives the equation 𝑋(𝑥)𝑇′(𝑡) = 𝑋′′(𝑥)𝑇(𝑡), which is
equivalent to the equation

𝑇′(𝑡)
𝑇(𝑡) =

𝑋′′(𝑥)
𝑋(𝑥) .

Observe that the right side of the equation is a function of position 𝑥 only, while the left side is a
function of 𝑡 only. Since both sides must equal, we see that neither side can be a function of 𝑥 or 𝑡.
This means that both sides must equal a constant which we will call 𝑐.

We will first solve the equation 𝑋′′(𝑥)/𝑋(𝑥) = 𝑐, which is the same as the equation 𝑋′′(𝑥) =
𝑐𝑋(𝑥). We will assume 𝑐 ≠ 0.36 What is a function whose twice derivative is equal to itself times
a constant? We know of the exponential function, sines and cosines. Since the former is the sum
of the latter two, a general solution to the equation has the form 𝑋(𝑥) = 𝑒𝜆𝑥 for some constant 𝜆.
Then 𝑋′′(𝑥) = 𝜆2𝑋(𝑥) and so 𝜆 = ±

√
𝑐. Recall that the linear combination of solutions of a linear

differential equation is itself a solution. Since 𝑋′′(𝑥) = 𝑐𝑋(𝑥) is a linear differential equation, we
see that

𝑋(𝑥) = 𝐴𝑒
√
𝑐𝑥 + 𝐵𝑒−

√
𝑐𝑥

for some constants 𝐴 and 𝐵 solves the equation 𝑋′′(𝑥) = 𝑐𝑋(𝑥). We have two conditions that our
solution must satisfy: (i) 𝑋(0) = 0 and (ii) 𝑋(1) = 0. The first condition gives 0 = 𝑋(0) = 𝐴 + 𝐵 and
so 𝐵 = −𝐴. The second condition gives 0 = 𝑋(1) = 𝐴

(
𝑒
√
𝑐 − 𝑒−

√
𝑐
)
. Since 𝑒

√
𝑐 = 𝑒−

√
𝑐 , we see that

𝑒2
√
𝑐 = 1. The equation 𝑒2

√
𝑐 = 1 is satisfied when 2

√
𝑐 = 2𝑛𝜋𝑖 for each positive integer 𝑛. Hence

𝑐 = −𝑛2𝜋2. In our search for one solution 𝑋, we have found infinitely many solutions, each of
which we will label 𝑋𝑛 , with 𝑋𝑛(𝑥) = 𝐴𝑛

(
𝑒𝑛𝜋𝑖𝑥 − 𝑒−𝑛𝜋𝑖𝑥

)
. Notice that the term inside the brackets

is a sine term. We may thus write

𝑋𝑛(𝑥) = 2𝑖𝐴𝑛 sin(𝑛𝜋𝑥).

We now turn to the equation 𝑇′(𝑡)/𝑇(𝑡) = 𝑐 = −𝑛2𝜋2, which is equivalent to the equation
𝑇′(𝑡) = −𝑛2𝜋2𝑇(𝑡). The solution to the equation is𝑇(𝑡) = 𝐶𝑒−𝑛

2𝜋2𝑡 for some constant 𝐶. Once again,
we have infinitely many solutions, and we will label each by the symbol 𝑇𝑛 :

𝑇𝑛(𝑡) = 𝐶𝑛𝑒
−𝑛2𝜋2𝑡 .

Therefore, a solution to our heat equation is

𝑢(𝑥, 𝑡) = 𝑋𝑛(𝑡)𝑇𝑛(𝑡) = 𝑎𝑛 sin(𝑛𝜋𝑥)𝑒−𝑛2𝜋2𝑡

where 𝑎𝑛 := 2𝑖𝐴𝑛𝐶𝑛 . Since the heat equation is a linear equation, sums of the solutions is also a
solution to the heat equation. Therefore,

𝑎1 sin(𝜋𝑥)𝑒−12𝜋2𝑡 + 𝑎2 sin(2𝜋𝑥)𝑒−22𝜋2𝑡 + 𝑎3 sin(3𝜋𝑥)𝑒−32𝜋2𝑡 + 𝑎4 sin(4𝜋𝑥)𝑒−42𝜋2𝑡 + · · ·

is also a solution to our heat equation. We will write this solution as

𝑢(𝑥, 𝑡) =
∞∑
𝑛=1

𝑎𝑛 sin(𝑛𝜋𝑥)𝑒−𝑛2𝜋2𝑡 .

36If 𝑐 = 0, then integrating twice gives 𝑋(𝑥) = 𝐴𝑥 + 𝐵 for some constants 𝐴 and 𝐵. In such a case the conditions
𝑋(0) = 𝑋(1) = 0 forces both 𝑋 and 𝑢 to be the zero function, which is not a useful solution.
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We still need to find the constants 𝑎𝑛 for each positive integer 𝑛. An easy calculation (the same
as Challenge 45) shows that for each positive integer 𝑚,∫ 1

0
sin(𝑛𝜋𝑥) sin(𝑚𝜋𝑥) 𝑑𝑥 =

1
2 𝛿𝑛𝑚

where 𝛿𝑛𝑚 := 1 when 𝑛 = 𝑚 and 𝛿𝑛𝑚 := 0 if 𝑛 ≠ 𝑚 (this function is called the Kronecker delta).
Then ∫ 1

0
𝑢(𝑥, 0) sin(𝑚𝜋𝑥) 𝑑𝑥 =

∫ 1

0

[ ∞∑
𝑛=1

𝑎𝑛 sin(𝑛𝜋𝑥)
]

sin(𝑚𝜋𝑥) 𝑑𝑥.

What next? How about we interchange the sum and the integral (this trick was first used by
Fourier) to get ∫ 1

0
𝑢(𝑥, 0) sin(𝑚𝜋𝑥) 𝑑𝑥 =

∞∑
𝑛=1

𝑎𝑛

∫ 1

0
sin(𝑛𝜋𝑥) sin(𝑚𝜋𝑥) 𝑑𝑥.

With this trick, the inner integral is trivial. Only one term in the sum survives:∫ 1

0
𝑢(𝑥, 0) sin(𝑚𝜋𝑥) 𝑑𝑥 =

∞∑
𝑛=1

𝑎𝑛
1
2 𝛿𝑛𝑚 =

𝑎𝑚

2 .

Therefore, each constant 𝑎𝑛 is given by 𝑎𝑛 = 2
∫ 1

0 𝑢(𝑥, 0) sin(𝑛𝜋𝑥) 𝑑𝑥 and so

𝑢(𝑥, 𝑡) =
∞∑
𝑛=1

[
2
∫ 1

0
𝑢(𝑥, 0) sin(𝑛𝜋𝑥) 𝑑𝑥

]
sin(𝑛𝜋𝑥)𝑒−𝑛2𝜋2𝑡

solves our heat equation. Our solution agrees with our intuition that the heat distribution at time
𝑡 depends on the initial heat distribution at time 𝑡 = 0 and that as 𝑡 → ∞, 𝑢 → 0 (since the terms
𝑒−𝑛

2𝜋2𝑡 → 0 for each positive integer 𝑛).
Fourier’s work on heat initiated an explosion of innovations in mathematics, sciences, and

engineering. We mention just two examples from mathematics. Georg Cantor’s initiation of
set theory, including his establishment of different kinds of infinities began here. The Riemann
integral and Lebesgue’s integration theory also sprung out from here (under what circumstances
does Fourier’s trick of interchanging integrals and summation work?).

5.6 Introduction to Groups

Let us return to the rotation of complex numbers in a unit circle. We can visualize this as a
wheel we are free to rotate about. Suppose we wanted to implement this wheel in software, what
would we need?
(A1) First, we will need to make sure that the rotation operation is implement properly such that

if a user rotates the wheel, it still remains a wheel (if we rotate a complex number on the unit
circle, we get a complex number on the unit circle.)

(A2) Second, a user can choose to not rotate the wheel, and leave it as is (we can leave a complex
number on the unit circle as is by rotating the complex number by 0, that is multiplying it by
𝑒0𝑖 = 1).
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(A3) Third, the user should be able to undo any rotation (rotation of a complex number on the
unit circle by 𝑥 is undone by rotation by −𝑥).

(A4) Fourth, our program should be able to resolve rotations unambiguously when the user
specifies multiple rotation inputs (if 𝑧 is a complex number on the unit circle, then 𝑧𝑒 𝑖𝑥𝑒 𝑖𝑦 :=
(𝑧𝑒 𝑖𝑥)𝑒 𝑖𝑦 must equal 𝑧(𝑒 𝑖𝑥𝑒 𝑖𝑦)).

Observe that a complex number on the unit circle 𝑧 that we are rotating is itself describing a
rotation! Indeed, each complex number on the unit circle takes the form 𝑒 𝑖𝑥 for some angle 𝑥. The
set of rotations along with the rotation operation form what we call a group.

Definition 51. A group is a set 𝐺 with an operation ★ such that the following hold.
(A1) (Closure) The ★ operation takes two elements in 𝐺 and outputs another element in 𝐺. That

is, for each pair 𝑎, 𝑏 ∈ 𝐺, we guarantee that 𝑎 ★ 𝑏 is an element of 𝐺.
(A2) (Identity) There is an element 𝑒 ∈ 𝐺 such that for each 𝑎 ∈ 𝐺, we have 𝑒 ★ 𝑎 = 𝑎 ★ 𝑒 = 𝑎. An

element that satisfies this is called an identity of 𝐺.
(A3) (Inverse) For each 𝑎 ∈ 𝐺, there is a 𝑏 ∈ 𝐺 such that 𝑎★𝑏 = 𝑏★ 𝑎 = 𝑒. We call 𝑏 an inverse of 𝑎.
(A4) (Associativity) For each 𝑎, 𝑏, 𝑐 ∈ 𝐺, we have (𝑎 ★ 𝑏)★ 𝑐 = 𝑎 ★ (𝑏 ★ 𝑐).

If 𝐺 is a group with operation ★, we will refer to it by (𝐺,★) or simply by 𝐺. The following is a
basic consequence of the conditions for a group.

Proposition 52. Group (𝐺,★) has a unique identity and each 𝑎 ∈ 𝐺 has a unique inverse.

Proof. Let 𝑒 and 𝑒′ be elements of 𝐺 such that for each 𝑎 ∈ 𝐺 we have 𝑒 ★ 𝑎 = 𝑎★ 𝑒 = 𝑎 and for each
𝑏 ∈ 𝐺 we have 𝑒′★ 𝑏 = 𝑏 ★ 𝑒′ = 𝑏. Put 𝑏 := 𝑒 and 𝑎 := 𝑒′ to get

𝑒 = 𝑒 ★ 𝑒′ = 𝑒′.

Let 𝑎 ∈ 𝐺 and let 𝑏, 𝑐 ∈ 𝐺 satisfy 𝑎 ★ 𝑏 = 𝑏 ★ 𝑎 = 𝑒 and 𝑎 ★ 𝑐 = 𝑐 ★ 𝑎 = 𝑒. Then

𝑏 = 𝑏 ★ 𝑒 = 𝑏 ★ (𝑎 ★ 𝑐) = (𝑏 ★ 𝑎)★ 𝑐 = 𝑒 ★ 𝑐 = 𝑐.

Since the identity of a group is unique, there is no problem in denoting the identity of 𝐺 by the
symbol 𝑒 or by 𝑒𝐺. Similarly, as the inverse of an element of a group is unique, there is no problem
in denoting the inverse of element □ by the symbol □−1.
Challenge 47 For each element 𝑎, 𝑏 in group (𝐺,★) show that (𝑎−1)−1 = 𝑎 and (𝑎★𝑏)−1 = 𝑏−1★𝑎−1.

In general, the order in which we rotate an object (in 3D say) matters. However, the order in
which we rotate a complex number on the unit circle does not matter (that is, 𝑧𝑒 𝑖𝑥 = 𝑒 𝑖𝑥𝑧). Such
special groups are said to be abelian.

Definition 53. Group (𝐺,★) is abelian if for each 𝑎, 𝑏 ∈ 𝐺 we have 𝑎 ★ 𝑏 = 𝑏 ★ 𝑎.

The real numbers under addition represent spatial translation of an object in a line (an active
transformation), or equivalently a rearrangement of the origin (a passive transformation) and so ℝ

with the addition operation is a group. In fact, it is an abelian group as 𝑎 + 𝑏 = 𝑏 + 𝑎 for each real
numbers 𝑎 and 𝑏.
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The set of complex numbers on the unit circle under the (complex) multiplication operation
is called the 𝑈(1) group. But we know that each complex number 𝑒 𝑖𝑥 on the unit circle can be
represented as a matrix:

𝑒 𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 =

(
cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

)
.

The set of matrices of the form above under the matrix multiplication operation is called the 𝑆𝑂(2)
group. For all intents and purposes, the groups𝑈(1) and 𝑆𝑂(2) are the “same".

What do we mean that the groups 𝑈(1) and 𝑆𝑂(2) are the "same"? It means that for each
complex number in𝑈(1), there is a unique corresponding matrix in 𝑆𝑂(2) such that the operations
in each group are respected.

Definition 54. A domain of a function 𝑓 is the set of inputs to 𝑓 . The codomain of a function 𝑓 is
the set that the outputs of 𝑓 belong. Thus complex valued functions have the set ℂ as codomain
while real valued functions have the set ℝ as codomain. If function 𝑓 has domain 𝐴 and codomain
𝐵, then we write 𝑓 : 𝐴→ 𝐵.

Definition 55. A function 𝑓 is injective if each 𝑥 ≠ 𝑦 implies 𝑓 (𝑥) ≠ 𝑓 (𝑦). A function 𝑓 : 𝐴→ 𝐵 is
surjective if for each 𝑦 ∈ 𝐵 there is a 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) = 𝑦. A function 𝑓 is bĳective if it is both
injective and surjective.

For example, the exponential function exp : ℝ→ ℝ is injective because it is strictly increasing,
but it is not surjective as there are no inputs which map to negative real numbers (but exp : ℝ→
(0,∞) is bĳective). On the other hand, the logarithm function log : (0,∞) → ℝ is bĳective. This is
what allowed us to consider an inverse function of the logarithm function (the exponential function).

Definition 56. Groups (𝐺,★) and (𝐻, ∗) are isomorphic if there is a map 𝑓 : 𝐺 → 𝐻 that satisfies
the following two conditions.

(a) Function 𝑓 is bĳective.
(b) For each 𝑎, 𝑏 ∈ 𝐺, 𝑓 (𝑎 ★ 𝑏) = 𝑓 (𝑎) ∗ 𝑓 (𝑏).

A function that satisfies the above is called an isomorphism. If 𝐺 and 𝐻 are isomorphic, then we
denote this by the symbol 𝐺 � 𝐻.

Thus𝑈(1) � 𝑆𝑂(2)with the isomorphism

𝑓 : 𝑒 𝑖𝑥 ↦→
(
cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

)
.

We also know that ℝ under the addition operation is isomorphic with the interval (0,∞) under the
multiplication operation, for there is an isomorphism exp. Indeed, exp

(
𝑥 + 𝑦

)
= exp(𝑥) · exp

(
𝑦
)
.

Challenge 48 For a group (𝐺,★) define the opposite group (𝐺op , ∗) to have the same underlying
set 𝐺 with operation ∗ defined by 𝑔 ∗ 𝑔′ =: 𝑔′ ★ 𝑔 for each 𝑔, 𝑔′ ∈ 𝐺. Show that (𝐺op , ∗) is a group
and show that 𝐺 � 𝐺op.

It is true that each complex number on the unit circle 𝑒 𝑖𝑥 is fully specified by a real number 𝑥,
but𝑈(1) is not isomorphic withℝ under the addition operation. The reason is that the specification
is not unique: 𝑒0𝑖 = 𝑒2𝜋𝑖 = 𝑒−2𝜋𝑖 and so on. This means that no isomorphism can exist between the
set of complex numbers in𝑈(1) and ℝ. It will be useful to relax the condition on bĳectivity.
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Definition 57. Let (𝐺,★) and (𝐻, ∗) be groups. A function 𝑓 is a homomorphism if for each 𝑎, 𝑏 ∈ 𝐺
we have 𝑓 (𝑎 ★ 𝑏) = 𝑓 (𝑎) ∗ 𝑓 (𝑏). If 𝑓 : 𝐺 → 𝐻 is a homomorphism, then the kernel of 𝑓 , written
ker 𝑓 is the set of elements in 𝐺 that map to the identity of 𝐻.

Thus the map 𝑓 : 𝑥 ↦→ 𝑒 𝑖𝑥 is a homomorphism for the group ℝ under the addition operation
and the group 𝑈(1). The set ker 𝑓 are the integer products of 2𝜋. We write ker 𝑓 = {2𝜋𝑘 : 𝑘 ∈ ℤ},
where the symbol 𝑘 was chosen arbitrarily.

Proposition 58. Let (𝐺,★) be a group with identity 𝑒𝐺 and let (𝐻, ∗) be a group with identity 𝑒𝐻 .
Let 𝑓 : 𝐺→ 𝐻 be a homomorphism and let 𝑎 ∈ 𝐺. Then 𝑓 (𝑒𝐺) = 𝑒𝐻 and 𝑓 (𝑎−1) = 𝑓 (𝑎)−1.

Proof. Let 𝑎 ∈ 𝐺 be arbitrary. Thent 𝑓 (𝑒𝐺) = 𝑓 (𝑒𝐺 ★ 𝑎) = 𝑓 (𝑒𝐺) ∗ 𝑓 (𝑎) and 𝑓 (𝑒𝐺) = 𝑓 (𝑎 ★ 𝑒𝐺) =
𝑓 (𝑎) ∗ 𝑓 (𝑒𝐺). Therefore 𝑓 (𝑒𝐺) = 𝑒𝐻 . Since 𝑓 (𝑎−1) ∗ 𝑓 (𝑎) = 𝑓 (𝑎−1 ★ 𝑎) = 𝑓 (𝑒𝐺) = 𝑒𝐻 and 𝑓 (𝑎) ∗ 𝑓 (𝑎−1) =
𝑓 (𝑎 ★ 𝑎−1) = 𝑓 (𝑒𝐺) = 𝑒𝐻 , we see that 𝑓 (𝑎−1) = 𝑓 (𝑎)−1.

Challenge 49
(a) Show that if 𝑎, 𝑏 are elements of group (𝐺,★)with 𝑎 ★ 𝑏 = 1 then 𝑏 = 𝑎−1.
(b) Show that the set of nonzero real numbers with the multiplication operation form a group.

This group is denoted by the symbol ℝ×.
(c) Show that the set of invertible 𝑛 × 𝑛 real matrices with matrix multiplication form a group.

This group is called 𝐺𝐿𝑛(ℝ), the general linear group over ℝ. [Hint: for each 𝐴, 𝐵 ∈ 𝐺𝐿𝑛(ℝ)
show that (𝐴𝐵)−1 = 𝐵−1𝐴−1.]

(d) We know that if 𝐴, 𝐵 are 2 × 2 matrices, then det(𝐴𝐵) = det𝐴det 𝐵. Thus the determinant
function provides a homomorphism between the groups 𝐺𝐿2(ℝ) and ℝ×. Show that the
determinant function is not an isomorphism. The kernel of det : 𝐺𝐿2(ℝ) → ℝ× with the
matrix multiplication operation is called 𝑆𝐿2(ℝ), a special linear group.

Group action
The concept of a group is incredibly fundamental. Our first example of a group was the group

𝑈(1). This is the group of rotations on the unit circle. The rotations are important because they
rotate complex numbers. Groups are so fundamental because they are the natural type of objects
that act on things. For example, the elements of group 𝑈(1) rotate complex numbers. We say that
the group𝑈(1) acts on the set ℂ (of complex numbers).

Definition 59. Let (𝐺,★) be a group with identity 𝑒 and let 𝑆 be a set. A (left) group action 𝛼 is a
map that takes an element of 𝐺 and an element of 𝑆 and returns an element of 𝑆 (as a shorthand,
we write 𝛼 : 𝐺 × 𝑆→ 𝑆) with the following properties.

(a) For each 𝑠 ∈ 𝑆, we have 𝛼(𝑒 , 𝑠) = 𝑠. For example, rotating a complex number 𝑧 by applying
the zero rotation 𝑒0𝑖 does nothing.

(b) For each 𝑎, 𝑏 ∈ 𝐺 and for each 𝑠 ∈ 𝑆, we have 𝛼 (𝑎, 𝛼(𝑏, 𝑠)) = 𝛼(𝑎★𝑏, 𝑠). For example, rotating
a complex number 𝑧 by 𝑒 𝑖𝑥 and then 𝑒 𝑖𝑦 has the same effect as rotating 𝑧 by 𝑒 𝑖(𝑥+𝑦).

If the above hold, we say that "(group) 𝐺 acts on (set) 𝑆".

We are going to upgrade from rotating circles to playing around with triangles. Consider an
equilateral triangle centered at the origin with vertex 1 at 𝑒 𝑖𝜋/2, vertex 2 at 𝑒 𝑖7𝜋/6, and vertex 3 at
𝑒 𝑖11𝜋/6 as shown in Figure 5.36. We will consider the transformation on this triangle such that the
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triangles shape remains the same, with the only change being the placement of the vertices. For
example, rotating the triangle by angles of integer multiples 2𝜋/3 leaves the shape intact, but any
other angles are not allowed.

1

23

Figure 5.36: An equilateral triangle centered at the origin with vertices 1, 2, and 3.

Rotating the triangle by the angles 0, 2𝜋/3, and 4𝜋/3 gives the results as shown in Figure 5.37.
Observe that rotation by the angle −2𝜋/3 is the same as rotation by angle 4𝜋/3. Similarly, rotation
by angle 6𝜋/3 is the same as rotation by angle 0. Therefore, the below three are the only possible
unique rotations.

1

23

3

12

2

31

Figure 5.37: The equilateral triangle from Figure 5.36 rotated by angles 0, 2𝜋/3, and 4𝜋/3.

Another way we can play around with our triangle is to turn the triangle upside down by
flipping the triangle around one of the edges. For example, if we flip the original triangle from
Figure 5.36 about the bottom edge (edge 23), then we get the leftmost triangle in Figure 5.38.

1

32

3

21

2

13

Figure 5.38: The equilateral triangle from Figure 5.36 flipped on edge 23, edge 13, and edge 12.

The group of transformations on the vertices of an equilateral triangle is called the dihedral
group𝐷6. Equivalently, we can forget about the triangle and consider a group, called the symmetric
group 𝑆3, that switches around (or permutes) the set {1, 2, 3}. Thus the elements of 𝑆3 are the
bĳective functions 𝑓 : {1, 2, 3} → {1, 2, 3}. A bĳective function that maps a set to itself is called a
permutation.

Let us list out the six permutations of the set 𝑆 = {1, 2, 3}. Each permutation 𝜎 is completely
specified by how 𝜎 acts on the three elements, that is: 𝜎 : 1 ↦→ 𝜎(1), 𝜎 : 2 ↦→ 𝜎(2), and 𝜎 : 3 ↦→ 𝜎(3).
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We will write down these three pieces of information in a table, as shown below, where the inputs
to 𝜎 are on the top row and the corresponding outputs of 𝜎 are at the bottom row.(

1 2 3
𝜎(1) 𝜎(2) 𝜎(3)

)
Permutations 𝜌1 , 𝜌2 , 𝜌3 that correspond to rotating our triangle by angles 0, 2𝜋

3 , and 4𝜋
3 respectively

are:

𝜌1 :=
(
1 2 3
1 2 3

)
𝜌2 :=

(
1 2 3
3 1 2

)
𝜌3 :=

(
1 2 3
2 3 1

)
.

Permutations 𝜏1 , 𝜏2 , 𝜏3 that correspond to the flipping of our triangle shown in Figure 5.38 in that
order are:

𝜏1 :=
(
1 2 3
1 3 2

)
𝜏2 :=

(
1 2 3
3 2 1

)
𝜏3 :=

(
1 2 3
2 1 3

)
.

These correspondences define an isomorphism from 𝐷6 to 𝑆3.
Challenge 50 Check that 𝜌1 = 𝜏𝑘 ◦ 𝜏𝑘 for 𝑘 ∈ {1, 2, 3}. Find 𝑖 , 𝑗 ∈ {1, 2, 3} such that 𝜌2 = 𝜏𝑖 ◦ 𝜏𝑗 .
Find 𝑚, 𝑛 ∈ {1, 2, 3} such that 𝜌3 = 𝜏𝑚 ◦ 𝜏𝑛 . Find 𝑓 , 𝑔 ∈ 𝑆3 such that 𝑓 ◦ 𝑔 ≠ 𝑔 ◦ 𝑓 and conclude
that 𝑆3 is non-abelian.

The permutations 𝜏1 , 𝜏2, and 𝜏3 are called transpositions because they simply swap a pair
of elements in {1, 2, 3}. Transpositions are the most basic type of permutations in because each
permutation is a function composition of transpositions (Challenge 50).
Challenge 51 Suppose we encoded our equilateral triangle with vertices 1, 2, and 3 as the vector

𝑣 := ©­«
1
2
3

ª®¬. Under this encoding a rotation by 2𝜋/3 results in a triangle of the vector ©­«
2
3
1

ª®¬. For each

permutation in 𝑆3, find a 3 × 3 matrix that implements the transformation when acting on the
vector 𝑣.37 These matrices are called permutation matrices. Check that each permutation matrix
is invertible.

Definition 60. An 𝑛-dimensional matrix representation 𝜌 of a group 𝐺 is a homomorphism
𝜌 : 𝐺→ 𝐺𝐿𝑛(ℝ).

Thus Challenge 51 gives a 3 dimensional matrix representation of 𝑆3. This representation is not
unique, and we give another representation of 𝑆3. We placed our equilateral triangle in an Argand
diagram in Figure 5.36 so that each vertices are complex numbers. Interpreting each vertex as a
vector of dimension 2 gives the following 2-dimensional matrix representation of 𝑆3.

𝜌1 ↦→
(
1 0
0 1

)
𝜌2 ↦→

(
cos 2𝜋

3 − sin 2𝜋
3

sin 2𝜋
3 cos 2𝜋

3

)
𝜌3 ↦→

(
cos 4𝜋

3 − sin 4𝜋
3

sin 4𝜋
3 cos 4𝜋

3

)

𝜏1 ↦→
(
−1 0
0 1

)
𝜏2 ↦→

(
− cos 2𝜋

3 sin 2𝜋
3

sin 2𝜋
3 cos 2𝜋

3

)
𝜏3 ↦→

(
− cos 4𝜋

3 sin 4𝜋
3

sin 4𝜋
3 cos 4𝜋

3

)
37Hint: 𝑀𝑣 = 𝑀 (1𝑒1 + 2𝑒2 + 3𝑒3) = 1(𝑀𝑒1) + 2(𝑀𝑒2) + 3(𝑀𝑒3).
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A natural question to ask is whether our matrix representations form a group. They had
better! The six matrices above form a subset of 𝐺𝐿2(ℝ). Do the six matrices above with the matrix
multiplication operation form a group?

Definition 61. If (𝐺,★) is a group, then a nonempty subset 𝐻 of 𝐺 is a subgroup if 𝐻 under the
operation ★ is a group. If 𝐻 is a subgroup of 𝐺 we write 𝐻 ≤ 𝐺.

To check if a nonempty subset 𝐻 is a (sub)group under the ★ operation, we need to check the
four conditions in Definition 51 of a group. However, associativity (condition C4) is guaranteed
because each element of 𝐻 is an element of 𝐺. In fact, if closure of operation ★ (condition C1) is
satisfied, then the condition on the existence of inverses (condition C3) guarantees that the identity
𝑒 of 𝐺 is an identity element of 𝐻 (condition C2). This establishes the following simple criteria for
checking whether a subset is a subgroup.

Proposition 62. If𝐺 under the operation★ is a group, then a nonempty subset𝐻 of𝐺 is a subgroup
if (1) closure of ★ is satisfied: for each 𝑎, 𝑏 ∈ 𝐻 we have 𝑎 ★ 𝑏 ∈ 𝐻; and (2) each element of 𝐻 has
an inverse: for each 𝑎 ∈ 𝐻 we have 𝑎−1 ∈ 𝐻.

Challenge 52 Let 𝐺 be a group under operation ★ and let 𝐻 be a subset of 𝐺.
(a) Show that if 𝐻 ≤ 𝐺, then (1) 𝐻 is nonempty and (2) for each 𝑎, 𝑏 ∈ 𝐻 we have 𝑎 ★ 𝑏−1 ∈ 𝐻.
(b) Suppose that (1) 𝐻 is nonempty and (2) for each 𝑎, 𝑏 ∈ 𝐻 we have 𝑎 ★ 𝑏−1 ∈ 𝐻. Show that

𝐻 ≤ 𝐺. [Hint: first show that 𝐻 contains the identity 𝑒 of 𝐺; put 𝑎 := 𝑒 on (2) to show that 𝐻
contains inverses. Use the fact that (𝑏−1)−1 = 𝑏 to show closure.]

Challenge 53 Let (𝐺,★) and (𝐻, ∗) be groups and let 𝑓 : 𝐺→ 𝐻 be a homomorphism.
(a) Show that ker 𝑓 ≤ 𝐻, where the former is to be interpreted as a group with the ∗ operation.
(b) Show that 𝑓 (𝐺) ≤ 𝐻, where the former is a group with the ★ operation. The group 𝑓 (𝐺) is

called the image of homomorphism 𝑓 . We also denote the image of 𝑓 using the notation im 𝑓 .
This result confirms that a matrix representation forms a group under the matrix multiplication
operation.

Our action on 𝑆3 is atomic in the sense that we cannot rotate halfway and stop; if we are
rotating, we must complete the rotation operation. This is best seen in our 2-dimensional matrix
representations of 𝑆3 where the rotation matrices are of discrete angles: 0, 2𝜋/3, and 4𝜋/3.

However, we know that actions can also be continuous. Indeed, the first action that we saw
was a continuous rotation of numbers on the complex plane. Let 𝑔 be the rotation matrix 𝑔(𝑡) :=(
cos 𝑡 − sin 𝑡
sin 𝑡 cos 𝑡

)
. We will consider a passive rotation (rotation of the axis) and thus 𝑔(−𝑡). As this

rotation is continuous, we can take the derivative. Since (𝑒−𝑖𝑡)′ = −𝑖𝑒−𝑖𝑡 , we know that

𝑔′(−𝑡) =
(

0 1
−1 0

)
𝑔(−𝑡).

By the definition of the derivative at 𝑡 = 0,

𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 + 𝑜(𝛼).

Write 𝛼 :=
(
𝑥 𝑦

) 𝑡 and we see that

𝑔′(0)𝛼 =

(
0 1
−1 0

) (
𝑥
𝑦

)
=

(
𝑦
−𝑥

)
.
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Thus the map 𝑔′(0) gives 𝑥 ↦→ 𝑦 and 𝑦 ↦→ −𝑥. But there is another way to obtain the same map.
Indeed, 𝑦𝜕1 : 𝑥 ↦→ 𝑦 and −𝑥𝜕2 : 𝑦 ↦→ −𝑥. Therefore[

𝑦𝜕1 − 𝑥𝜕2
] (
𝑥
𝑦

)
=

(
𝑦
−𝑥

)
.

If we put in a factor of 𝑖ℏ to make this “quantum", we may define 𝐿 := 𝑖ℏ(𝑦𝜕1 − 𝑥𝜕2). Recall that
the momentum operator 𝑃𝑥 is defined by 𝑃𝑥 := −𝑖ℏ𝜕1.38 Similarly, we may define the momentum
operator 𝑃𝑦 := −𝑖ℏ𝜕2. Therefore 𝐿 is a momentum on rotation, an angular momentum operator.

We can make a jump to three dimensions by adding a 𝑧-axis. In the above, the invisible 𝑧-axis
was fixed (ignored) and no motion occurred along the 𝑧-axis. So we may interpret 𝐿 = 𝑖ℏ(𝑦𝜕1−𝑥𝜕2)
as a rotation along the 𝑧-axis and define 𝐿𝑧 := 𝑖ℏ(𝑦𝜕1 − 𝑥𝜕2).

3 = z

2 = y1 = x

3 = z

2 = y1 = x

Figure 5.39: The three axis in 3 dimension made to form a triangle.

How about rotation along the 𝑥-axis (axis 1) and the 𝑦-axis (axis 2)? We may represent each
axis as vertices in a triangle as shown in Figure 5.39. Rotating the triangle by 2𝜋/3 gives 1 = 𝑥 ↦→
2 = 𝑦 ↦→ 3 = 𝑧 ↦→ 1 = 𝑥. Therefore, rotation along the 𝑥-axis should be described by the operator

𝐿𝑥 := 𝑖ℏ(𝑧𝜕2 − 𝑦𝜕3).

Similarly, rotating the triangle by 4𝜋/3 gives 1 = 𝑥 ↦→ 3 = 𝑧 ↦→ 2 = 𝑦 ↦→ 1 = 𝑥. Therefore, rotation
along the 𝑦-axis should be described by the operator

𝐿𝑦 := 𝑖ℏ(𝑥𝜕3 − 𝑧𝜕1).

Before we close our discussion of groups, we note that a group is associated with one operation.
However, we know of ℝ (and also ℂ) which have two associated operations, addition and multipli-
cation.39 Now (ℝ,+) is a group, but (ℝ,×) is not a group. In particular, the number 0 does not have
an inverse (this is what we mean by: we cannot divide by zero). However, if we define ℝ\{0} to be
the set of nonzero elements of ℝ, then (ℝ\{0},×) is an abelian group. To package the two groups
(ℝ,+) and (ℝ\{0},×) as one object, we will need to link the addition and multiplication operation
together. In order to achieve this, we will require that the product of addition works as we expect:
for each real numbers 𝑎, 𝑏, 𝑐, we have 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐). These conditions are precisely
what we mean by a field.

First, here are some preliminary definitions. A binary function is a function that takes in two
inputs. A binary operation defined on set 𝑆 is a binary function that takes in two elements of 𝑆
and outputs an element of 𝑆. If 𝑆 is a set with element 𝑎, then 𝑆\{𝑎} is the collection of elements
of 𝑆 that are not 𝑎.

38We have upgraded from motion in one dimension to motion in two dimensions and thus have a momentum along the
𝑥-axis 𝑃𝑥 and a momentum along the 𝑦-axis 𝑃𝑦 .

39Subtraction by 𝑎 is addition by the inverse of 𝑎, and division by 𝑏 is multiplication by the inverse of 𝑏.
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Definition 63. A field is a set 𝐹 with binary operation + (addition) and binary operation ×
(multiplication) such that:

(a) (𝐹,+) is an abelian group with the identity element (called additive identity) denoted 0,
(b) (𝐹\{0},×) is an abelian group with the identity element (called multiplicative identity) 1,40
(c) for each 𝑎, 𝑏, 𝑐 ∈ 𝐹 the distributive law 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) holds.

In addition to ℝ, we have also seen the field of rational numbers ℚ and the complex field ℂ.
How about the real vector space ℝ𝑛 with vector addition and scalar multiplication? Notice that

ℝ𝑛 cannot be a field as there is no division of vectors. To accommodate, let us try considering
the set of vectors and the scalars separately. First, we have an abelian group (ℝ𝑛 ,+) where + is
the vector addition operation. Next, we have a field ℝ, with which we wish to "scale" the vectors
in ℝ𝑛 . Such a "scaling" of vectors is accomplished by the group action of scalar multiplication
𝑎 · 𝑣 := (𝑎𝑣1 , 𝑎𝑣2 , . . . , 𝑎𝑣𝑛)T by the group (ℝ\{0},×) on the set ℝ𝑛 . Finally, we need to ensure that
vector addition and scalar multiplication are both compatible with each other. To do this we need
to ensure that (a) scalar multiplication of vector addition works as we would expect and (b) scalar
multiplication by field addition works as we would expect. We now spell out these conditions.

Definition 64. A vector space over a field 𝐹 (with additive identity 0 and multiplicative identity 1)
is a set 𝑉 with a binary operation + (vector addition) defined on 𝑉 and a binary function · (scalar
multiplication) defined on the pair 𝐹 and 𝑉 whose output is an element of 𝑉 , such that:

(a) (𝑉,+) is an abelian group with identity denoted 0𝑉 (to distinguish from 0),
(b) 1 · 𝑣 = 𝑣 for each 𝑣 ∈ 𝑉 ,
(c) for each 𝑎, 𝑏 ∈ 𝐹 and 𝑣 ∈ 𝑉 we have 𝑎 · (𝑏 · 𝑣) = (𝑎 × 𝑏) · 𝑣,
(d) for each 𝑎, 𝑏 ∈ 𝐹 and 𝑣, 𝑤 ∈ 𝑉 we have 𝑎 · (𝑢 + 𝑣) = 𝑎 · 𝑢 + 𝑎 · 𝑣 and (𝑎 + 𝑏) · 𝑣 = 𝑎 · 𝑣 + 𝑏 · 𝑣.41

An element of 𝑉 is called a vector and an element of 𝐹 is called a scalar. For 𝑎 ∈ 𝐹 and 𝑣 ∈ 𝑉 , we
write 𝑎𝑣 instead of 𝑎 · 𝑣.

Of course, ℝ𝑛 andℂ𝑛 (the set of real vectors or complex vectors of dimension 𝑛 under the vector
addition operation and the scalar multiplication operation) are both vector spaces.

40Observe that 0 and 1 are necessarily distinct. Thus a field must have at least two elements
41The last condition gives 0 · 𝑣 = 0𝑉 for each 𝑣 ∈ 𝑉 . Indeed, 0 · 𝑣 = (0 + 0) · 𝑣 = 0 · 𝑣 + 0 · 𝑣, and so 0 · 𝑣 = 0𝑉 .
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Multivariables

6.1 Gaussian Integrals

We are back to working with real numbers. The goal of this Appendix is to show that you could
readily generalize what we have discovered so far and apply to multivariable functions. We begin
by calculating several integrals that are crucial in quantum theory. They center around the most
important integral:

∫ ∞
−∞ 𝑒

−𝑎𝑥2
𝑑𝑥, where 𝑎 is a positive real number. First, let us try and see what the

answer should look like. Let us assign the dimension Length to input 𝑥. Because an input to the
exponential function must be dimensionless,1 the constant 𝑎 will have to take dimension Length−2.
Recall that the derivative of 𝑓 has the dimension of 𝑓 divided by the dimension of the input 𝑥. The
inverse operation of integration will thus take the dimension of 𝑓 and multiply by the dimension
of the input 𝑥. Therefore, the dimension of

∫ ∞
−∞ 𝑒

−𝑎𝑥2
𝑑𝑥 is Length. The only dimensionful quantity

we have is 𝑎 (of dimension Length−2) and to form a dimension of Length, the simplest solution is
𝑐√
𝑎
, for some constant 𝑐. It turns out that the dimensionless constant 𝑐 is

√
𝜋. Therefore,∫ ∞

−∞
𝑒−𝑎𝑥

2
𝑑𝑥 =

√
𝜋
𝑎
. (6.1)

In this Appendix, we will show that 𝑐 is
√
𝜋.

Before we do this, let us extend Equation 6.1 to the integral
∫ ∞
−∞ 𝑒

−𝑎𝑥2+𝑏𝑥 𝑑𝑥, where 𝑎 is positive
and 𝑏 is some real number. Just as we calculated ellipses by reducing it to a circle, which we
reduced to a unit circle, we will reduce this complicated integral into a simpler one.

The trick we will need is a very useful one called completing the square.

Proposition 65 (Quadratic Formula). A quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with nonzero 𝑎 is
solved by the formula

𝑥 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎 .

1This was done in Challenge 12, but let’s do it again. Suppose 𝑒𝑥 has dimension 𝑌 and 𝑥 has dimension 𝑋. Then (𝑒𝑥)′
has dimension 𝑌/𝑋. But (𝑒𝑥)′ = 𝑒𝑥 , so 𝑌/𝑋 = 𝑌, and 𝑥 must be dimensionless.

129
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Proof. We use the the technique of completing the square. Dividing by 𝑎 and subtracting 𝑐/𝑎 on
both sides of the equation gives

𝑥2 + 𝑏
𝑎
𝑥 = − 𝑐

𝑎
.

The idea is that we want the left side to be of the form (𝑥 + 𝛼)2, for some 𝛼. To do this, we add(
𝑏
2𝑎

)2 to both sides:

𝑥2 + 𝑏
𝑎
𝑥 +

(
𝑏

2𝑎

)2

= − 𝑐
𝑎
+

(
𝑏

2𝑎

)2

.

The left side of the equation is now a square, as you should verify. Combining the two terms on
the right gives (

𝑥 + 𝑏

2𝑎

)2

=
𝑏2 − 4𝑎𝑐

4𝑎2 .

Taking the square root on both sides gives us the formula:

𝑥 + 𝑏

2𝑎 = ±
√
𝑏2 − 4𝑎𝑐

2𝑎 .

The symbol ±means there are two solutions 𝑏
2𝑎 +

√
𝑏2−4𝑎𝑐

2𝑎 and 𝑏
2𝑎 −

√
𝑏2−4𝑎𝑐

2𝑎 . To see the necessity
of two roots, observe that if 𝑎 = ±2 then 𝑎2 = 4. But if we take the square root

√
𝑎2, then we are

only left with the positive solution 𝑎 = 2. To fix this, we add the ± symbol and write ±
√
𝑎2.

Theorem 66 (Gaussian Integral). ∫ ∞

−∞
𝑒−𝑎𝑥

2+𝑏𝑥 𝑑𝑥 = 𝑒𝑏
2/(4𝑎)

√
𝜋
𝑎

Proof. First, you should check that the answer makes sense dimensionally. We are going to reduce
this integral into the integral in Equation 6.1. If we turn −𝑎𝑥2 + 𝑏𝑥 into −𝑎𝑢2 + 𝑐 for some constant
𝑐, then Equation 6.1 gives∫ ∞

−∞
𝑒−𝑎𝑢

2+𝑐 𝑑𝑢 =

∫ ∞

−∞
𝑒 𝑐𝑒−𝑎𝑢

2
𝑑𝑢 = 𝑒 𝑐

∫ ∞

−∞
𝑒−𝑎𝑢

2
𝑑𝑢 = 𝑒 𝑐

√
𝜋
𝑎
.

In order to do this, we complete the square by adding a constant:

−𝑎𝑥2 + 𝑏𝑥 = −𝑎𝑥2 + 𝑏𝑥 − 𝑏
2

4𝑎 +
𝑏2

4𝑎 = −𝑎
(
𝑥2 − 𝑏

2𝑎

)2

+ 𝑏
2

4𝑎 .

So we should take 𝑐 := 𝑏2/4𝑎 and 𝑢 : 𝑥 ↦→ 𝑥 − 𝑏/(2𝑎). Since 𝑢′ = 1, the substitution rule gives∫ ∞

−∞
𝑒−𝑎𝑥

2+𝑏𝑥 𝑑𝑥 = 𝑒𝑏
2/(4𝑎)

∫ ∞

−∞
𝑒−𝑎𝑥

2
𝑑𝑥 = 𝑒𝑏

2/(4𝑎)
√

𝜋
𝑎
.
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Let us return to the integral
∫ ∞
−∞ 𝑒

−𝑥2
𝑑𝑥. First, notice that because of the square, the function 𝑒−𝑥2

is an even function. This means that
∫ ∞

0 𝑒−𝑎𝑥
2
𝑑𝑥 =

∫ 0
−∞ 𝑒

−𝑎𝑥2
𝑑𝑥 and so

∫ ∞
−∞ 𝑒

−𝑥2
𝑑𝑥 = 2

∫ ∞
0 𝑒−𝑥

2
𝑑𝑥.

One of the endpoints of our integral
∫ ∞

0 𝑒−𝑥
2
𝑑𝑥 is not finite. An improper integral

∫ ∞
𝑜

𝑓 (𝑥) 𝑑𝑥
for some real number 𝑜 is defined by the following limit, if it exists.∫ ∞

𝑜

𝑓 (𝑥) 𝑑𝑥 := lim
𝑡→∞

∫ 𝑡

𝑜

𝑓 (𝑥) 𝑑𝑥

If the above limit defining an improper integral exists, we will say that the improper integral
converges.

As an aside, we have also seen another type of an improper integral in Challenge 17. The
integral

∫ 1
−1 1/𝑥2 𝑑𝑥 is an improper integral because 𝑥 ↦→ 1/𝑥2 is undefined at 𝑥 = 0. The integral∫ 1

0 1/𝑥 𝑑𝑥 is also an improper integral because 1/𝑥 → ∞ as 𝑥 → 0. These two integrals are called
improper integrals of the second type. When we speak of an improper integral in this book, we
mean integrals of the form

∫ ∞
𝑎

𝑓 (𝑥) 𝑑𝑥 where 𝑎 is a real number.
Taking a limit always requires greater care. Nevertheless, many of our previous results port

over to improper integrals. Here is an example.

Theorem 67 (Integration by Parts). Let 𝑓 and 𝑔 be differentiable functions defined on [𝑎,∞) such
that 𝑓 ′ and 𝑔′ are continuous. If lim𝑏→∞ 𝑓 (𝑏)𝑔(𝑏) exists and the integral

∫ ∞
𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥 converges
then

∫ ∞
𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 converges with∫ ∞

𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 = lim
𝑏→∞

[
𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎)

]
−

∫ ∞

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥.

Proof. For each 𝑏 > 𝑎 integration by parts gives∫ 𝑏

𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 =
[
𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎)

]
−

∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥. (6.2)

By assumption the following limit exists.

lim
𝑏→∞

[
𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎)

]
−

∫ ∞

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥 = lim
𝑏→∞

{[
𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎)

]
−

∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥
}

Equation 6.2 tells us that lim𝑏→∞
∫ 𝑏

𝑎
𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 also exists. Since lim𝑏→∞

∫ 𝑏

𝑎
𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 =∫ ∞

𝑎
𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥, the integral

∫ ∞
𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 converges with∫ ∞

𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥 = lim
𝑏→∞

[
𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎)

]
−

∫ ∞

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥.

Now that we have some idea of what we are dealing with, let us go on ahead and calculate. Not
so fast! It turns out that the integral

∫ ∞
0 𝑒−𝑥

2
𝑑𝑥 is special and very difficult to calculate.
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This is hard to imagine. Suppose we changed the function a little bit by removing the square
and putting back the positive constant 𝑎: ∫ ∞

0
𝑒−𝑎𝑥 𝑑𝑥.

This is a relatively straightforward integral because (−𝑒−𝑎𝑥/𝑎)′ = 𝑒−𝑎𝑥 and lim𝑥→∞ 𝑒−𝑥 = 0:

lim
𝑡→∞

∫ 𝑡

0
𝑒−𝑎𝑥 𝑑𝑥 = lim

𝑡→∞

(
− 𝑒
−𝑎𝑥

𝑎

����𝑡
0

)
= lim
𝑡→∞

(
− 1
𝑎𝑒 𝑎𝑡
+ 𝑒

0

𝑎

)
= 0 + 1

𝑎
=

1
𝑎
.

Challenge 54 We can think of the integral
∫ ∞

0 𝑒−𝑎𝑥 𝑑𝑥 as a function of 𝑎 and let 𝑓 : 𝑎 ↦→
∫ ∞

0 𝑒−𝑎𝑥 𝑑𝑥
be a function defined on the interval (0,∞). From our previous calculations we know that 𝑓 (𝑎) = 1/𝑎
and so 𝑓 ′(𝑎) = −1/𝑎2. But 𝑓 (𝑎) is an integral over the variable 𝑥, which is independent from variable
𝑎. So we may take the derivative inside to obtain 𝑓 ′(𝑎) =

∫ ∞
0

d
d𝑎 𝑒
−𝑎𝑥 𝑑𝑥. Hence

− 1
𝑎2 = 𝑓 ′(𝑎) =

∫ ∞

0

d
d𝑎 𝑒

−𝑎𝑥 𝑑𝑥 = −
∫ ∞

0
𝑥𝑒−𝑎𝑥 𝑑𝑥

and so
∫ ∞

0 𝑥𝑒−𝑎𝑥 𝑑𝑥 = 1/𝑎2. This technique is called differentiation under the integral sign.
(a) Use the well-ordering principle to show that∫ ∞

0
𝑥𝑛𝑒−𝑎𝑥 𝑑𝑥 =

𝑛!
𝑎𝑛+1

and conclude that
𝑛! =

∫ ∞

0
𝑥𝑛𝑒−𝑥 𝑑𝑥.

Define the gamma function Γ on the interval (0,∞) by

Γ(𝑡) =
∫ ∞

0
𝑥𝑡−1𝑒−𝑥 𝑑𝑥.

Recall from the end of Chapter 4 that lim𝑥→∞ 𝑥𝑎/𝑒𝑥 = 0 for each real 𝑎. Use integration by
parts (Theorem 67) to show that Γ(𝑡 + 1) = 𝑡Γ(𝑡). Since Γ(𝑛 + 1) = 𝑛! for each positive integer
𝑛, the gamma function extends the factorial function 𝑛! to positive real numbers.

(b) Apply a differentiation under the integral sign on Equation 6.1 to show that∫ ∞

−∞
𝑥2𝑒−𝑎𝑥

2
𝑑𝑥 =

1
2

√
𝜋

𝑎3 .

Continuing to differentiate under the integral sign gives the formula for
∫ ∞
−∞ 𝑥

2𝑛𝑒−𝑎𝑥
2
𝑑𝑥.

(c) Apply differentiation under the integral sign on Theorem 66 (on the variable 𝑏) to show that∫ ∞

−∞
𝑥𝑒−𝑎𝑥

2+𝑏𝑥 𝑑𝑥 =
𝑏

2𝑎 𝑒
𝑏2/(4𝑎)

√
𝜋
𝑎
.
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Polar coordinates
Calculating the integral of 𝑒−𝑎𝑥 was simple because (−𝑒−𝑎𝑥/𝑎)′ = 𝑒−𝑎𝑥 . But differentiating 𝑒−𝑥2

gives an extra term −2𝑥, which is not a constant. To fix this, we will try to work out some sort of
substitution. For example, we can find the integral

∫ ∞
0 𝑥𝑒−𝑎𝑥

2
𝑑𝑥 with the substitution 𝑔(𝑥) := 𝑥2:∫ ∞

0
𝑥𝑒−𝑎𝑥

2
𝑑𝑥 =

1
2

∫ ∞

0
𝑒−𝑎𝑥

22𝑥 𝑑𝑥 =
1
2

∫ ∞

0
𝑒−𝑎𝑔(𝑥)𝑔′(𝑥) 𝑑𝑥 =

1
2

∫ ∞

0
𝑒−𝑎𝑢 𝑑𝑢 =

1
2𝑎 . (6.3)

The substitution we will need is actually a change in coordinate system. Because our integral
is too difficult to do on the regular (𝑥, 𝑦) coordinate system, we will use our knowledge from
trigonometric functions to come up with a new way of identifying points on the plane.

real axis

imaginary axis
𝑟

𝑟−𝑟

(Re 𝑟𝑒 𝑖𝜃 , Im 𝑟𝑒 𝑖𝜃)

𝜃
𝑥-axis

𝑦-axis
𝑟

𝑟−𝑟

(𝑟 cos𝜃, 𝑟 sin𝜃)

𝜃

Figure 6.4: Argand diagram of 𝑟𝑒 𝑖𝜃 (left), which is the same as (𝑟 cos𝜃, 𝑟 sin𝜃) (right).

Although we are working with real numbers, there is no reason we cannot use insights from
complex numbers. We will simply replace the real axis with the label “𝑥-axis" and the imaginary
axis with the label “𝑦-axis". Then the complex number 𝑧 := 𝑟𝑒 𝑖𝜃 on the Argand diagram corre-
sponds to the coordinate (𝑟 cos𝜃, 𝑟 sin𝜃) on our 𝑥-𝑦 plane, which is the same as (Re 𝑧, Im 𝑧) on the
Argand diagram. Since the real and imaginary parts of a complex number are real, all is good!

The representation of points on the 𝑥-𝑦 plane using (𝑟 cos𝜃, 𝑟 sin𝜃) is called polar coordinates.
The usual representation (𝑥, 𝑦) is called rectangular coordinates.

𝑥, 𝑦 ≥ 0 𝑦 ≥ 0 𝑥 ≥ 0

We measure angle 𝜃 in radians. The region 𝑥 ≥ 0 and 𝑦 ≥ 0 (first diagram above) in polar
coordinates is the region where 𝑟 ≥ 0 and 𝜃 ∈ [0,𝜋/2]. The region 𝑦 ≥ 0 (second diagram) in
polar coordinates is the region 𝑟 ≥ 0 and 𝜃 ∈ [0,𝜋]. The region 𝑥 ≥ 0 (third diagram) in polar
coordinates is the region 𝑟 ≥ 0 and 𝜃 ∈ [−𝜋/2,𝜋/2]. The entirety of the 𝑥-𝑦 plane (final diagram)
is represented in polar coordinates by the region 𝑟 ≥ 0 and 𝜃 ∈ [0, 2𝜋].

Now that we have a new way of representing coordinates, let us figure out how to make a
substitution for our integral!
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6.2 Change of Variables

The formula
We recall differentiation with dual numbers. Suppose we have some function 𝑓 that is differen-

tiable at 𝑡. Then by the definition of the derivative, the equation 𝑓 (𝑡 + 𝑎𝜖) = 𝑓 (𝑡) + 𝑓 ′(𝑡)(𝑎𝜖) holds.
We are free to choose our origin of measurement, so define 𝑡 to be the origin of the 𝑥-axis and 𝑓 (𝑡)
to be the origin of the 𝑦-axis so that 𝑡 = 0 and 𝑓 (𝑡) = 0. Then the equation simplifies to

𝑓 (𝑎𝜖) = 𝑓 ′(𝑡)(𝑎𝜖).

Everything except the number 𝑎 in this equation is taken as fixed: function 𝑓 , the number 𝑡, the
dual number 𝜖. However, the number 𝑎 is a variable. Take another number 𝑎̃ > 𝑎 and observe that
𝑓 (𝑎̃𝜖) = 𝑓 ′(𝑡)(𝑎̃𝜖) also holds. Subtracting one equation from another gives the following.

𝑓 (𝑎̃𝜖) − 𝑓 (𝑎𝜖)︸           ︷︷           ︸
rise in value

= 𝑓 ′(𝑡)(𝑎̃𝜖) − 𝑓 ′(𝑡)(𝑎𝜖) = 𝑓 ′(𝑡) ·
(
[𝑎̃ − 𝑎] 𝜖

)︸      ︷︷      ︸
change along 𝑥-axis

We will denote the function’s rise by 𝑑𝑓 and the change of inputs along the 𝑥-axis by 𝑑𝑥 and write

𝑑𝑓 = 𝑓 ′(𝑡) 𝑑𝑥. (6.5)

Notice that 𝑑𝑥 and 𝑑𝑓 are functions that take in 𝑎 and output a real number. The outputs of 𝑑𝑥 and
𝑑𝑓 satisfy the relationship given in Equation 6.5.

Let us extend this idea to functions of two variables and three variables. Suppose function 𝑓
takes two inputs 𝑥 and 𝑦. The relationship between the function’s rise and the increase in variable
𝑥 is described precisely by 𝜕𝑥 𝑓 (𝑡). Similarly, the relationship between the function’s rise and the
increase in the variable 𝑦 is given by the number 𝜕𝑦 𝑓 (𝑡). Therefore,

𝑑𝑓 = 𝜕𝑥 𝑓 (𝑡) 𝑑𝑥 + 𝜕𝑦 𝑓 (𝑡) 𝑑𝑦. (6.6)

Repeating this for a function 𝑓 of three variables, we have 𝑑𝑓 = 𝜕𝑥 𝑓 (𝑡) 𝑑𝑥 + 𝜕𝑦 𝑓 (𝑡) 𝑑𝑦 + 𝜕𝑧 𝑓 (𝑡) 𝑑𝑧.
We have new objects, so let’s do some arithmetic with it! As with the dual numbers, we will

interpret the symbols 𝑑□ to be nonzero quantities that square to zero. The difference is that there
was only one 𝜖, but now we have lots of 𝑑□, so this rule is not enough. The rule that (𝑑□)2 = 0 is
a rule about products of these symbols; we need a rule about addition. But we need our addition
rule to be compatible with the squaring rule we already have. The simplest way we can achieve
this is to tie the addition rule to the squaring rule: summing the symbols 𝑑□ is fine, but if we try
to square that sum, then it also becomes zero.

As an example, let 𝑋 := 𝑑𝑥 + 𝑑𝑦. Then 𝑋2 = 0, and so

0 = 𝑋2 = (𝑑𝑥 + 𝑑𝑦)(𝑑𝑥 + 𝑑𝑦) = (𝑑𝑥)2 + 𝑑𝑥 𝑑𝑦 + 𝑑𝑦 𝑑𝑥 + (𝑑𝑦)2 = 0 + 𝑑𝑥 𝑑𝑦 + 𝑑𝑦 𝑑𝑥 + 0. (6.7)

We see that 𝑑𝑥 𝑑𝑦 = −𝑑𝑦 𝑑𝑥. How about a product of linear combinations?

(𝛼 𝑑𝑥 + 𝛽 𝑑𝑦)(𝛾 𝑑𝑥 + 𝛿 𝑑𝑦) = 0 + (𝛼𝛿)𝑑𝑥 𝑑𝑦 + (𝛽𝛾)𝑑𝑦 𝑑𝑥 + 0 = (𝛼𝛿 − 𝛽𝛾)𝑑𝑥 𝑑𝑦. (6.8)

We now apply our new algebra to do calculus. The polar coordinates are described by the rule

𝑥 = 𝑟 cos𝜃 and 𝑦 = 𝑟 sin𝜃. (6.9)
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Observe that we can regard 𝑥 and 𝑦 as functions of 𝑟 and 𝜃. In particular, let us write

𝑥 = 𝑔1(𝑟, 𝜃) := 𝑟 cos𝜃 and 𝑦 = 𝑔2(𝑟, 𝜃) := 𝑟 sin𝜃.

We already worked out a function’s rise with respect to increases in each of its inputs in Equation 6.6.
We see that

𝑑𝑥 = 𝜕𝑟 𝑔1 𝑑𝑟 + 𝜕𝜃𝑔1 𝑑𝜃 and 𝑑𝑦 = 𝜕𝑟 𝑔2 𝑑𝑟 + 𝜕𝜃𝑔2 𝑑𝜃.

Using the derivatives of cosines and sines, the partial derivatives are as follows.

𝜕𝑟 𝑔1 = cos𝜃 𝜕𝜃𝑔1 = −𝑟 sin𝜃 𝜕𝑟 𝑔2 = sin𝜃 𝜕𝜃𝑔2 = 𝑟 cos𝜃

Their product is then the product of linear combinations from Equation 6.8

𝑑𝑥 𝑑𝑦 =
(
𝜕𝑟 𝑔1𝜕𝜃𝑔2 − 𝜕𝜃𝑔1𝜕𝑟 𝑔2

)
𝑑𝑟 𝑑𝜃 = (𝑟 cos2 𝜃 + 𝑟 sin2 𝜃) 𝑑𝑟 𝑑𝜃 = 𝑟 𝑑𝑟 𝑑𝜃 (6.10)

where we have used the Pythagorean theorem: cos2 𝜃 + sin2 𝜃 = 1. How about we use this to
calculate the area of a circle once more?

An area of a circle of radius 𝑟 can be calculated with the integral
∬
𝐴
𝑑𝑥 𝑑𝑦, where 𝐴 is the

set of points (𝑥, 𝑦) on the 𝑥-𝑦 plane such that 𝑥2 + 𝑦2 ≤ 𝑟2. Instead of taking the integral over
𝐴, we will take an integral over a new region 𝐴̃, where each point in 𝐴 corresponds to a point
(𝑟 cos𝜃, 𝑟 sin𝜃) ∈ 𝐴̃ such that 𝑟 ∈ [0, 𝑟] and 𝜃 ∈ [0, 2𝜋]. The catch is that when integrating over
the new region, we need to substitute 𝑑𝑥 𝑑𝑦 with our result from Equation 6.10. Applying our
procedure gives the expected answer, as shown below.∬

𝐴

𝑑𝑥 𝑑𝑦 =

∬
𝐴̃

𝑟 𝑑𝑟 𝑑𝜃 =

∫ 2𝜋

0

∫ 𝑟

0
𝑟 𝑑𝑟 𝑑𝜃 =

∫ 2𝜋

0

𝑟2

2 𝑑𝜃 =
𝑟2

2

∫ 2𝜋

0
𝑑𝜃 = 𝜋𝑟2

There is one subtlety. Let us recall when we first met the complex field in Section 5.3. We made

the choice of 𝑖 :=
(
0 −1
1 0

)
. Suppose someone else decided to define 𝑖 :=

(
0 1
−1 0

)
, a perfectly rea-

sonable choice. As we discussed before, their Argand diagram would have the opposite imaginary
axis compared to ours. This means that their polar coordinate is given by the transformation rule
𝑥 = 𝑟 cos𝜃 and 𝑦 = −𝑟 sin𝜃. Their partial derivatives of the transformations will be given by

𝜕𝑟 𝑔1 = cos𝜃 𝜕𝜃𝑔1 = −𝑟 sin𝜃 𝜕𝑟 𝑔2 = − sin𝜃 𝜕𝜃𝑔2 = −𝑟 cos𝜃

and so

𝑑𝑥 𝑑𝑦 =
(
𝜕𝑟 𝑔1𝜕𝜃𝑔2 − 𝜕𝜃𝑔1𝜕𝑟 𝑔2

)
𝑑𝑟 𝑑𝜃 = (−𝑟 cos2 𝜃 − 𝑟 sin2 𝜃) 𝑑𝑟 𝑑𝜃 = −𝑟 𝑑𝑟 𝑑𝜃.

Therefore, using our algebraic rules from Equation 6.8, they will calculate the area of a circle of
radius 𝑟 to be∬

𝐴

𝑑𝑥 𝑑𝑦 =

∫ 2𝜋

0

∫ 𝑟

0
(−𝑟) 𝑑𝑟 𝑑𝜃 = −

∫ 2𝜋

0

𝑟2

2 𝑑𝜃 = − 𝑟
2

2

∫ 2𝜋

0
𝑑𝜃 = −𝜋𝑟2?!

A circle having negative area is absurd, and they did everything correctly! This means that the
algebraic rule from Equation 6.8 must be modified to:

(𝛼 𝑑𝑥 + 𝛽 𝑑𝑦)(𝛾 𝑑𝑥 + 𝛿 𝑑𝑦) = |𝛼𝛿 − 𝛽𝛾|𝑑𝑥 𝑑𝑦.
Adding this absolute value gives us the change of variables formula in two dimensions:∬

𝐴

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∬
𝐴̃

𝑓
(
𝑔1(𝑢, 𝑣), 𝑔2(𝑢, 𝑣)

) ��𝜕𝑢 𝑔1𝜕𝑣 𝑔2 − 𝜕𝑣 𝑔1𝜕𝑢 𝑔2
�� 𝑑𝑢 𝑑𝑣. (6.11)
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Calculating the integral
At last, we can calculate the Gaussian integral.2

Theorem 68. ∫ ∞

−∞
𝑒−𝑥

2
𝑑𝑥 =

√
𝜋.

Proof. Since 𝑒−𝑥2 is even, if 𝐼 :=
∫ ∞

0 𝑒−𝑥
2
𝑑𝑥, then

∫ ∞
−∞ 𝑒

−𝑥2
𝑑𝑥 = 2𝐼. The trick is to calculate 𝐼2:

𝐼2 = 𝐼

∫ ∞

0
𝑒−𝑦

2
𝑑𝑦 =

∫ ∞

0
𝐼𝑒−𝑦

2
𝑑𝑦 =

∫ ∞

0

(∫ ∞

0
𝑒−𝑥

2
𝑑𝑥

)
𝑒−𝑦

2
𝑑𝑦.

Since 𝑒−𝑦2 is a constant with respect to the variable 𝑥, we push it in:

𝐼 =

∫ ∞

0

∫ ∞

0
𝑒−𝑥

2
𝑒−𝑦

2
𝑑𝑥 𝑑𝑦 =

∫ ∞

0

∫ ∞

0
𝑒−(𝑥

2+𝑦2) 𝑑𝑥 𝑑𝑦.

We are integrating over the region where 𝑥 ≥ 0 and 𝑦 ≥ 0. Each point in this region corresponds
to the polar coordinate (𝑟 cos𝜃, 𝑟 sin𝜃)where 𝑟 ≥ 0 and 𝜃 ∈ [0,𝜋/2] (angle 𝜃 is between 0 and the
right angle). From Equation 6.10 we know that 𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝜃.

We make the change of variables 𝑥2 + 𝑦2 ↦→ 𝑟2 and use the change of variables formula to get

𝐼2 =

∫ ∞

0

∫ ∞

0
𝑒−(𝑥

2+𝑦2) 𝑑𝑥 𝑑𝑦 =

∫ 𝜋/2

0

∫ ∞

0
𝑒−𝑟

2
𝑟 𝑑𝑟 𝑑𝜃.

Since (−𝑒−𝑟2/2)′ = 𝑒−𝑟
2
𝑟 (clean and simple!), we have

𝐼2 =

∫ 𝜋/2

0

∫ ∞

0
𝑒−𝑟

2
𝑟 𝑑𝑟 𝑑𝜃 =

∫ 𝜋/2

0

[
−1

2 𝑒
−𝑟2

����∞
𝑟=0

]
𝑑𝜃.

Since lim𝑟→∞ 𝑒𝑟
2
= ∞, we know that lim𝑟→∞ 𝑒−𝑟

2
= lim𝑟→∞ 1/𝑒𝑟2

= 0. Therefore,

𝐼2 =

∫ 𝜋/2

0

[
−1

2 𝑒
−𝑟2

����∞
𝑟=0

]
𝑑𝜃 =

∫ 𝜋/2

0

[
0 + 𝑒

0

2

]
𝑑𝜃 =

1
2

∫ 𝜋/2

0
𝑑𝜃 =

𝜋
4 .

We conclude that ∫ ∞

−∞
𝑒−𝑥

2
𝑑𝑥 = 2𝐼 = 2

√
𝜋

2 =
√
𝜋

as desired.

Applying the substitution rule with the substitution 𝑥 ↦→
√
𝑎𝑥 for positive 𝑎 gives∫ ∞

−∞
𝑒−𝑎𝑥

2
𝑑𝑥 =

√
𝜋
𝑎
.

2This important integral can be calculated many different ways, including the differentiation under the integral sign.
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At this point, integrals like the following should look quite harmless.∫ ∞

0
𝑥2𝑛𝑒−𝑥

2/𝑎2
𝑑𝑥 =

√
𝜋
(2𝑛)!
𝑛!

(
𝑎

2

)2𝑛+1 ∫ ∞

0
𝑥2𝑛+1𝑒−𝑥

2/𝑎2
𝑑𝑥 =

𝑛!
2 𝑎

2𝑛+2

To obtain the former, apply the substitution rule with the substitution 𝑥 ↦→ 𝑥/𝑎 on the integral∫ ∞
−∞ 𝑒

−𝑥2
𝑑𝑥 =

√
𝜋. Since the function 𝑒−𝑥2/𝑎2 is an even function, we have

∫ ∞
0 𝑒−𝑥

2/𝑎2
𝑑𝑥 =

√
𝜋 𝑎/2.

Taking a differentiation under the integration sign gives
∫ ∞

0 𝑥2𝑒−𝑥
2/𝑎2

𝑑𝑥 =
√
𝜋 𝑎3/4. Let 𝑛 be the

smallest natural number for which the formula does not hold. Since the formula holds for the
natural number 𝑛 − 1, we know that the following holds.∫ ∞

0
𝑥2(𝑛−1)𝑒−𝑥

2/𝑎2
𝑑𝑥 =

√
𝜋
(2[𝑛 − 1])!
(𝑛 − 1)!

(
𝑎

2

)2(𝑛−1)+1
.

Apply differentiation under the integral sign to get∫ ∞

0
𝑥2(𝑛−1)(2𝑥2𝑎−3)𝑒−𝑥2/𝑎2

𝑑𝑥 =
√
𝜋
(2[𝑛 − 1])!
(𝑛 − 1)! (2[𝑛 − 1] + 1) 𝑎

2(𝑛−1)

22(𝑛−1)+1 .

Multiply both sides by 𝑎3

2 and multiply the right side by 2𝑛
2𝑛 and tidy up to obtain∫ ∞

0
𝑥2𝑛𝑒−𝑥

2/𝑎2
𝑑𝑥 =

√
𝜋
(2[𝑛 − 1])!
(𝑛 − 1)! (2[𝑛 − 1] + 1) 𝑎

2(𝑛−1)+3

22(𝑛−1)+2
2𝑛
2𝑛 =

√
𝜋
(2𝑛)!
𝑛!

𝑎2𝑛+1

22𝑛+1

as desired.
The latter is similar. Start by applying the substitution rule on the integral

∫ ∞
0 𝑥𝑒−𝑥

2
𝑑𝑥 = 1/2

with the substitution 𝑥 ↦→ 𝑥/𝑎.3 Differentiating this under the integral sign gives us∫ ∞

0
(2𝑥2𝑎−3)𝑥𝑒−𝑥2/𝑎2

𝑑𝑥 =
2
2 𝑎

which (after some algebra) is the desired formula for the natural number 𝑛 = 1. If 𝑛 is the smallest
natural number for which our formula does not hold, then the following is true:∫ ∞

0
𝑥2(𝑛−1)+1𝑒−𝑥

2/𝑎2
𝑑𝑥 =

(𝑛 − 1)!
2 𝑎2(𝑛−1)+2.

Differentiating under the integral sign results in the following equation.∫ ∞

0
(2𝑥2𝑎−3)𝑥2(𝑛−1)+1𝑒−𝑥

2/𝑎2
𝑑𝑥 = 2𝑛 (𝑛 − 1)!

2 𝑎2𝑛−1

The above tidies up to the desired form:∫ ∞

0
𝑥2𝑛+1𝑒−𝑥

2/𝑎2
𝑑𝑥 =

𝑛!
2 𝑎

2𝑛+2.

Have a look at an introductory quantum mechanics text to see the integrals of this chapter in action.
3We know from Equation 6.3 that

∫ ∞
0 𝑥𝑒−𝛼𝑥

2
𝑑𝑥 = 1

2𝛼 . Take 𝛼 = 1 then substitute to get
∫ ∞
0 (𝑥/𝑎) 𝑒

−𝑥2/𝑎2 (1/𝑎) 𝑑𝑥 = 1
2 .
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6.3 Determinants

The determinant is an important concept that appears in many places, yet it has a complicated
looking formula that makes it difficult to see how one could come up with the concept in the first
place. Our goal will be to obtain the determinant for 3 × 3 matrices and its properties together.

We review the change of variables formula. If we wish to calculate an integral
∬
𝐴
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

we can instead do a change of variables 𝑥 = 𝑔1(𝑢, 𝑣) and 𝑦 = 𝑔2(𝑢, 𝑣) to calculate a new integral over
the corresponding region 𝐴̃ in 𝑢, 𝑣 space (in our case, it was polar coordinates with the variables 𝑟
and 𝜃). This was the change of variables formula in two dimensions:∬

𝐴

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∬
𝐴̃

𝑓
(
𝑔1(𝑢, 𝑣), 𝑔2(𝑢, 𝑣)

) ��𝜕𝑢 𝑔1𝜕𝑣 𝑔2 − 𝜕𝑣 𝑔1𝜕𝑢 𝑔2
�� 𝑑𝑢 𝑑𝑣. (6.12)

The formula above can be tidied up by using a matrix. Each transformation 𝑥 = 𝑔1(𝑢, 𝑣) and
𝑦 = 𝑔2(𝑢, 𝑣) are real valued functions of two variables. Take the gradients of each function and stack

their transpose together to obtain the Jacobian matrix 𝐽𝑔 for the transformation 𝑔(𝑢, 𝑣) :=
(
𝑔1(𝑢, 𝑣)
𝑔2(𝑢, 𝑣)

)
,

defined by

𝐽𝑔 :=
( (
∇𝑔1

)T(
∇𝑔2

)T

)
=

(
𝜕𝑢 𝑔1 𝜕𝑣 𝑔1
𝜕𝑢 𝑔2 𝜕𝑣 𝑔2

)
.

Observe that the expression inside the absolute values of Equation 6.12 is the determinant of the
Jacobian matrix (the determinant of a Jacobian matrix is called the Jacobian).

The regions 𝐴 and 𝐴̃ have the relationship 𝐴 = 𝑔(𝐴̃). Renaming 𝐴̃ with 𝐴 allows us to write
the change of variables formula in two dimensions as:∬

𝑔(𝐴)
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∬
𝐴

( 𝑓 ◦ 𝑔)(𝑢, 𝑣)
��det 𝐽𝑔

�� 𝑑𝑢 𝑑𝑣. (6.13)

If an integral
∫
𝑑𝑥 measures a length, then a double integral

∬
𝑑𝑥 𝑑𝑦 measures an area. What

does a determinant have to with areas? Recall that the determinant maps a matrix to a real number.
An 𝑛 × 𝑚 matrix 𝐴 transforms a vector of dimension 𝑚, where the 𝑖th column is 𝐴𝑒𝑖 . So let us
visualize a transformation in action.

1

1

𝑒1

𝑒2

𝑎𝑏

𝑐

𝑑

𝑎 𝑏

𝑐
𝑑

𝑏𝑎

𝑑

𝑐

Figure 6.14: The standard basis vectors 𝑒1 , 𝑒2 and its transformations form a parallelogram.

The columns of a matrix 𝑀 :=
(
𝑎 𝑏
𝑐 𝑑

)
tells us that 𝑀𝑒1 =

(
𝑎
𝑐

)
and 𝑀𝑒2 =

(
𝑎
𝑐

)
. We can visualize

a vector as a line emanating from the origin to its coordinates. For example the basis vector 𝑒1 is
shown as a red line beginning from the origin to coordinate (1, 0) in the first diagram of Figure 6.14.
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Similarly the basis vector 𝑒2 is shown as a blue line beginning from the origin to coordinate (0, 1)
in the first diagram of Figure 6.14. Using this visualization, the vectors 𝑀𝑒1 (red) and 𝑀𝑒2 (blue)
specify a parallelogram, as shown in the second, third, and fourth diagrams of Figure 6.14.

We will assume that both𝑀𝑒1 and𝑀𝑒2 are nonzero vectors for now. There are three possibilities:
vector 𝑀𝑒1 remains below vector 𝑀𝑒2 (second figure), vectors 𝑀𝑒1 and 𝑀𝑒2 overlap (third figure),
or vector 𝑀𝑒1 is above vector 𝑀𝑒2 (fourth figure).

Because rotating an object does not change the object’s area, we can easily calculate our paral-
lelogram’s area by rotating our parallelogram so that one of the lines lies on the 𝑥-axis, then taking
the product of the base and height of the rotated parallelogram. Since each nonzero 2 × 2 matrix
specifies a parallelogram, it is sufficient to apply the rotation on matrix 𝑀.

1

1

𝑒1

𝑒2
𝑀

𝑎𝑏

𝑐

𝑑
𝑅

(𝑅𝑀)11

(𝑅𝑀)22

Figure 6.15: Transformation of 𝑒1 and 𝑒2 by 𝑀, followed by a rotation 𝑅.

First, suppose that vector 𝑀𝑒1 is above vector 𝑀𝑒2. Let −𝑥 be the angle between the 𝑥 axis
and the vector 𝑀𝑒2 (red line). We multiply the matrix 𝑀 from the left by the rotation matrix 𝑅
corresponding to 𝑒 𝑖𝑥 so that (𝑅𝑀)𝑒2 lies on the 𝑥-axis (see Figure 6.15):(

cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

) (
𝑎 𝑏
𝑐 𝑑

)
=

(
𝑎 cos 𝑥 − 𝑐 sin 𝑥 𝑏 cos 𝑥 − 𝑑 sin 𝑥
𝑎 sin 𝑥 + 𝑐 cos 𝑥 𝑏 sin 𝑥 + 𝑑 cos 𝑥

)
.

Then the length of the base of the parallelogram is given by (𝑅𝑀)11 = 𝑎 cos 𝑥 − 𝑐 sin 𝑥 while the
height of the parallelogram is given by (𝑅𝑀)22 = 𝑏 sin 𝑥 + 𝑑 cos 𝑥. The area of the parallelogram is
thus

base × height = (𝑎 cos 𝑥 − 𝑐 sin 𝑥)(𝑏 sin 𝑥 + 𝑑 cos 𝑥)
= −𝑏𝑐 sin2 𝑥 + 𝑎𝑑 cos2 𝑥 + 𝑎𝑏 cos 𝑥 sin 𝑥 − 𝑐𝑑 sin 𝑥 cos 𝑥.

As (𝑅𝑀)𝑒1 lies on the 𝑥-axis without a 𝑦-component, (𝑅𝑀)21 = 𝑎 sin 𝑥+ 𝑐 cos 𝑥 = 0. We thus obtain

base × height = −𝑏𝑐 sin2 𝑥 + 𝑎𝑑 cos2 𝑥 + 𝑎𝑏 cos 𝑥 sin 𝑥 − 𝑐𝑑 sin 𝑥 cos 𝑥
= −𝑏𝑐 sin2 𝑥 + 𝑎𝑑 cos2 𝑥 − 𝑏𝑐 cos2 𝑥 + 𝑎𝑑 sin2 𝑥

= −𝑏𝑐(sin2 𝑥 + cos2 𝑥) + 𝑎𝑑(cos2 𝑥 + sin2 𝑥) = 𝑎𝑑 − 𝑏𝑐
which is simply the determinant of 𝑀.

If vectors𝑀𝑒1 and𝑀𝑒2 overlap (as in the third diagram of Figure 6.14), then the parallelogram’s
area is 0.4 This is also correctly given by the determinant of 𝑀. Indeed, if at least one of 𝑀𝑒1 and
𝑀𝑒2 is zero, then at least one of the columns of 𝑀 is zero, which means that det𝑀 = 0. Otherwise,
if 𝑀𝑒1 and 𝑀𝑒2 overlap and are both nonzero, then 𝑀𝑒2 is a multiple of 𝑀𝑒1 for some scalar 𝛼.

This means that 𝑀 =

(
𝑎 𝛼𝑎
𝑐 𝛼𝑐

)
and so det𝑀 = 𝑎 · 𝛼𝑐 − 𝛼𝑎 · 𝑐 = 0, as desired.

4This case covers the possibility that at least one of 𝑀𝑒1 and 𝑀𝑒2 is the zero vector.
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1

1

𝑒1

𝑒2
𝑀̃

𝑏𝑎

𝑑

𝑐
𝑅̃

(𝑅̃𝑀̃)12

(𝑅̃𝑀̃)21

Figure 6.16: Transformation of 𝑒1 and 𝑒2 by 𝑀̃, followed by rotation 𝑅̃.

Challenge 55
(a) Let 𝑀̃ be a matrix such that vector 𝑀̃𝑒1 lies above vector 𝑀̃𝑒2 (second diagram of Figure 6.16).

Let −𝑦 be the angle between the 𝑥 axis and the vector 𝑀̃𝑒2 (blue line). Multiply the matrix 𝑀̃
from the left by the rotation matrix 𝑅̃ corresponding to 𝑒 𝑖𝑦 so that (𝑅̃𝑀̃)𝑒2 lies on the 𝑥-axis.
Show that the area of the parallelogram is given by −det 𝑀̃.

(b) Check that multiplying the matrix 𝑀̃ from the right by the rotation matrix 𝑅̃ does not change
the conclusion of part (a). Hence the order that we apply the transformation and rotation
does not matter.

We see that the determinant of 𝑀 by itself does correspond to the area of the parallelogram
specified by matrix 𝑀. The area of the parallelogram is given by the absolute value |det𝑀| and
the determinant of 𝑀 is said to give the signed area of the parallelogram specified by the columns
of matrix 𝑀.
Challenge 56 We generalize to functions of three variables.

(a) Use our rules for the symbols 𝑑□ to obtain the following relations.

𝑑𝑢 𝑑𝑣 = −𝑑𝑣 𝑑𝑢 𝑑𝑢 𝑑𝑤 = −𝑑𝑤 𝑑𝑢 𝑑𝑣 𝑑𝑤 = −𝑑𝑤 𝑑𝑣
(b) Use part (a) to conclude that

𝑑𝑢 𝑑𝑣 𝑑𝑤 = −𝑑𝑣 𝑑𝑢 𝑑𝑤 = 𝑑𝑣 𝑑𝑤 𝑑𝑢 = −𝑑𝑤 𝑑𝑣 𝑑𝑢 = 𝑑𝑤 𝑑𝑢 𝑑𝑣 = −𝑑𝑢 𝑑𝑤 𝑑𝑣.
(c) Calculate 𝑑𝑥 𝑑𝑦 𝑑𝑧where 𝑑𝑥 := 𝜕𝑢 𝑔1 𝑑𝑢+𝜕𝑣 𝑔1 𝑑𝑣+𝜕𝑤 𝑔1 𝑑𝑤, 𝑑𝑦 := 𝜕𝑢 𝑔2 𝑑𝑢+𝜕𝑣 𝑔2 𝑑𝑣+𝜕𝑤 𝑔2 𝑑𝑤,

and 𝑑𝑧 := 𝜕𝑢 𝑔3 𝑑𝑢+𝜕𝑣 𝑔3 𝑑𝑣+𝜕𝑤 𝑔3 𝑑𝑤. There are six terms because (𝑑𝑢)2 = (𝑑𝑣)2 = (𝑑𝑤)2 = 0.
Don’t forget to put the coefficients inside an absolute value to prevent negative volumes arising
because of the conversion factor.

(d) Define

𝑔(𝑢, 𝑣, 𝑤) := ©­«
𝑔1(𝑢, 𝑣, 𝑤)
𝑔2(𝑢, 𝑣, 𝑤)
𝑔3(𝑢, 𝑣, 𝑤)

ª®¬ and 𝑔′ := ©­«
(∇𝑔1)T
(∇𝑔2)T
(∇𝑔3)T

ª®¬ .
The Jacobian matrix 𝐽𝑔 is a matrix of dimension 3×3. In order to make the change of variables
formula in three dimensions below to work∭

𝑔(𝐴)
𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∭
𝐴

( 𝑓 ◦ 𝑔)(𝑢, 𝑣, 𝑤)|det 𝐽𝑔| 𝑑𝑢 𝑑𝑣 𝑑𝑤

show that the determinant of a matrix of dimension 3 × 3 should be defined to be

det ©­«
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

ª®¬ := 𝑎𝑒𝑖 − 𝑎 𝑓 ℎ + 𝑏 𝑓 𝑔 − 𝑏𝑑𝑖 + 𝑐𝑑ℎ − 𝑐𝑒 𝑔.
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Due to the absolute value in the change of variables formula, the negative of the above also
works. Which do we choose? Show that the above gives det 1 = 1 and is the correct choice.

In part (b) of Challenge 56, we see that every time we do a transposition, we multiply by a
negative sign. If we think of a permutation as corresponding to a sign, we have the following.(

𝑢 𝑣 𝑤
𝑢 𝑣 𝑤

)
↦→ 1

(
𝑢 𝑣 𝑤
𝑣 𝑢 𝑤

)
↦→ −1

(
𝑢 𝑣 𝑤
𝑣 𝑤 𝑢

)
↦→ 1

(
𝑢 𝑣 𝑤
𝑤 𝑣 𝑢

)
↦→ −1

(
𝑢 𝑣 𝑤
𝑤 𝑢 𝑣

)
↦→ −1

(
𝑢 𝑣 𝑤
𝑢 𝑤 𝑣

)
↦→ −1

Notice that the permutations that correspond to a negative signs are the transpositions in 𝑆3, while
all non transpositions corresponds to a positive sign.
Challenge 57 Let 𝜌 be the 3-dimensional representation of 𝑆3 as permutation matrices. Show
that the permutation matrices corresponding to transpositions have determinant −1 and the others
have determinant +1. Show that if 𝑓 : 𝐺→ 𝐺′ and 𝑔 : 𝐺′→ 𝐺̃ are homomorphisms then ℎ := 𝑓 ◦ 𝑔
is a homomorphism. The homomorphism 𝜌 ◦ det : 𝑆3 → {±1} tells us the sign of a permutation.

We can formalize this relation in a similar manner as the Kronecker delta 𝛿𝑖 𝑗 . Let 𝑙 , 𝑚, and 𝑛 each
take a value between 1, 2, and 3. For example, we may take 𝑙 = 1, 𝑚 = 3, 𝑛 = 2 or 𝑙 = 2, 𝑚 = 2, 𝑛 = 1.

Define the Levi-Civita symbol 𝜖𝑙𝑚𝑛 as follows. For each 𝜎 :=
(
1 2 3
𝑙 𝑚 𝑛

)
,

𝜖𝑙𝑚𝑛 :=


0 if 𝜎 ∉ 𝑆3 ,

−1 if 𝜎 ∈ 𝑆3 is a transposition,
+1 if 𝜎 ∈ 𝑆3 is not a transposition.

Thus 𝜖123 = 𝜖231 = 𝜖312 = 1 and 𝜖132 = 𝜖213 = 𝜖321 = −1, while 𝜖221 = 0.
Challenge 58 Let 𝐴 be a 3× 3 matrix whose entry in the 𝑖-row and 𝑗-th column is denoted by 𝐴𝑖 𝑗 .

(a) Show that

det𝐴 =

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑖 𝑗𝑘𝐴1𝑖𝐴2𝑗𝐴3𝑘 (6.17)

where the determinant of a 3 × 3 matrix was defined in Challenge 56. The term on the right
is a sum with 33 = 27 terms, only six of which are nonzero, as the group 𝑆3 has six elements.

(b) Let 𝑙 , 𝑚, 𝑛 ∈ {1, 2, 3} (not necessarily distinct!). Use Equation 6.17 to show that

𝜖𝑙𝑚𝑛 det𝐴 =

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 . (6.18)

[Hint: this is far less work than it may seem. If 𝜎 ∉ 𝑆3, we may assume without loss of
generality that 𝑙 = 𝑚. Similarly, for the case that 𝜎 ∈ 𝑆3 is a transposition, we may assume
without loss of generality that 𝜎 is the transposition 1 ↦→ 2, 2 ↦→ 1.]
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(c) Multiplying both sides of the Equation 6.18 by 𝜖𝑙𝑚𝑛 and then summing over 𝑙 , 𝑚, 𝑛 gives

det𝐴
3∑
𝑙=1

3∑
𝑚=1

3∑
𝑛=1

𝜖𝑙𝑚𝑛𝜖𝑙𝑚𝑛 =

3∑
𝑙=1

3∑
𝑚=1

3∑
𝑛=1

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑙𝑚𝑛𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 .

Show that

3! det𝐴 =

3∑
𝑙=1

3∑
𝑚=1

3∑
𝑛=1

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑙𝑚𝑛𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 . (6.19)

Proposition 69. If 𝐴 is a 3 × 3 matrix, then det𝐴T = det𝐴.

Proof. From Equation 6.19 we have

3! det𝐴T =

3∑
𝑙=1

3∑
𝑚=1

3∑
𝑛=1

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑙𝑚𝑛𝜖𝑖 𝑗𝑘𝐴𝑖𝑙𝐴 𝑗𝑚𝐴𝑘𝑛 .

Interchange the label 𝑖 with 𝑙, the label 𝑗 with 𝑚, and the label 𝑘 with 𝑛 to get

3! det𝐴T =

3∑
𝑙=1

3∑
𝑚=1

3∑
𝑛=1

3∑
𝑖=1

3∑
𝑗=1

3∑
𝑘=1

𝜖𝑙𝑚𝑛𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 = 3! det𝐴.

Theorem 70. Let 𝐴 be a 3 × 3 matrix whose entry in the 𝑖-row and 𝑗-th column is denoted by 𝐴𝑖 𝑗 .
(a) For the 3 × 3 identity matrix 1, det 1 = 1.
(b) If any of the two rows or columns are a scalar multiple of another, then det𝐴 = 0.
(c) Interchanging any two rows or columns of 𝐴 changes the sign of the determinant.
(d) Multiplying a row or column of 𝐴 by 𝑐 multiplies the determinant by 𝑐.
(e) Adding a scalar multiple of a row (column) into a different row (column) leaves the determi-

nant unchanged.

Proof. As det𝐴T = det𝐴, the results for columns follows from the corresponding result for rows.
Let 𝑐 be a scalar.

(a) Immediate from Equation 6.17.
(b) Immediate from Equation 6.18:

∑3
𝑖=1

∑3
𝑗=1

∑3
𝑘=1 𝜖𝑖 𝑗𝑘𝐴𝑙𝑖(𝑐𝐴𝑙 𝑗)𝐴𝑛𝑘 = 0.

(c) Also immediate from Equation 6.18.
(d) Immediate from Equation 6.17:

∑3
𝑖=1

∑3
𝑗=1

∑3
𝑘=1 𝜖𝑖 𝑗𝑘(𝑐𝐴1𝑖)𝐴2𝑗𝐴3𝑘 = 𝑐 det𝐴.

(e) Add a scalar multiple of the 𝑛th row to the 𝑚th row to modify Equation 6.18 as follows (the
symbol

∑
𝑖 𝑗𝑘 means

∑3
𝑖=1

∑3
𝑗=1

∑3
𝑘=1).∑

𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖(𝐴𝑚𝑗 + 𝑐𝐴𝑛𝑗)𝐴𝑛𝑘 =
∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘
(
𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 + 𝐴𝑙𝑖[𝑐𝐴𝑛𝑗]𝐴𝑛𝑘

)
=

∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 +
∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖(𝑐𝐴𝑛𝑗)𝐴𝑛𝑘

=

∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘 + 𝑐𝜖𝑙𝑛𝑛 det𝐴 =

∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐴𝑙𝑖𝐴𝑚𝑗𝐴𝑛𝑘
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Proposition 71. If 𝐴 and 𝐵 are 3 × 3 matrices, then det(𝐴𝐵) = det𝐴det 𝐵.

Proof. Since (𝐴𝐵)𝑖 𝑗 =
∑3
𝑘=1 𝐴𝑖𝑘𝐵𝑘 𝑗 , we have

det(𝐴𝐵) =
∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘

(
3∑
𝑙=1

𝐴1𝑙𝐵𝑙𝑖

) (
3∑

𝑚=1
𝐴2𝑚𝐵𝑚𝑗

) (
3∑
𝑛=1

𝐴3𝑛𝐵𝑛𝑘

)
.

We will pull out the terms that only depend on 𝑙 , 𝑚, 𝑛 to get

det(𝐴𝐵) =
∑
𝑙 ,𝑚,𝑛

𝐴1𝑙𝐴2𝑚𝐴3𝑛
∑
𝑖 𝑗𝑘

𝜖𝑖 𝑗𝑘𝐵𝑙𝑖𝐵𝑚𝑗𝐵𝑛𝑘 .

By Equation 6.18, the sum over 𝑖 , 𝑗 , 𝑘 is 𝜖𝑙𝑚𝑛 det 𝐵:

det(𝐴𝐵) =
∑
𝑙 ,𝑚,𝑛

𝐴1𝑙𝐴2𝑚𝐴3𝑛 (𝜖𝑙𝑚𝑛 det 𝐵) =
( ∑
𝑙 ,𝑚,𝑛

𝜖𝑙𝑚𝑛𝐴1𝑙𝐴2𝑚𝐴3𝑛

)
det 𝐵.

But the term in the brackets is simply det𝐴. Therefore, det(𝐴𝐵) = det𝐴det 𝐵.

As with 2 × 2 matrices, the determinant gives the criterion for invertibility.

Corollary 72. A 3 × 3 matrix 𝐴 is not invertible if det𝐴 = 0.

Proof. If not, there is some 𝐴−1 such that 𝐴𝐴−1 = 1, giving the following contradiction.

1 = det 1 = det
(
𝐴𝐴−1) = det𝐴det𝐴−1 = 0 det𝐴−1 = 0

Challenge 59 If 𝐶 is a matrix, then 𝐶𝑖 𝑗 is the matrix formed by removing row 𝑖 and column 𝑗. For
example,

𝐶 := ©­«
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

ª®¬ =⇒ 𝐶21 =

(
𝑏 𝑐
ℎ 𝑖

)
.

Let 𝐴 be a 3 × 3 matrix with nonzero determinant.
(a) Show that det𝐴 =

∑3
𝑗=1(−1)1+𝑗𝐴1𝑗 det𝐴1𝑗 . This is called the Laplace expansion along row 1.

(b) Show that for each row number 𝑖 ∈ {1, 2, 3}, the following equation holds.

det𝐴 =

3∑
𝑗=1
(−1)𝑖+𝑗𝐴𝑖 𝑗 det𝐴𝑖 𝑗

This is the Laplace expansion along row 𝑖.
(c) Show that for each column number 𝑗 ∈ {1, 2, 3}, the following equation holds.

det𝐴 =

3∑
𝑖=1
(−1)𝑖+𝑗𝐴𝑖 𝑗 det𝐴𝑖 𝑗

This is the Laplace expansion along column 𝑗. The term (−1)𝑖+𝑗 det𝐴𝑖 𝑗 is called the (𝑖 , 𝑗)-
cofactor of 𝐴.
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(d) Let 𝐴 and 𝐵 be 𝑛 × 𝑛 matrices. Show that (𝐴𝐵)T = 𝐵T𝐴T. [Hint: [𝐴𝐵]𝑖 𝑗 =
∑𝑛
𝑘=1 𝐴𝑖𝑘𝐵𝑘 𝑗 .]

(e) The adjugate matrix of 𝐴, denoted adj 𝐴, is the transpose of the cofactor matrix of 𝐴. Thus
[adj 𝐴]𝑖 𝑗 := (−1)𝑗+𝑖 det𝐴 𝑗𝑖 . Check that (adj 𝐴)T = adj 𝐴T.

(f) Observe that

[𝐴(adj 𝐴)]𝑖𝑖 =
3∑
𝑘=1

𝐴𝑖𝑘(adj 𝐴)𝑘𝑖 =
3∑
𝑘=1
(−1)𝑘+𝑖𝐴𝑖𝑘 det𝐴𝑖𝑘 = det𝐴.

Show that [𝐴(adj 𝐴)]𝑖 𝑗 = (det𝐴)𝛿𝑖 𝑗 (Kronecker delta) and so 𝐴(adj 𝐴) = (det𝐴)1. [Hint: what
happens to the (𝑖 , 𝑗)-cofactor of 𝐴 when we replace column 𝑗 of matrix 𝐴 with column 𝑖?]

(g) Use parts (d), (e), and (f) to show that (adj 𝐴)𝐴 = (det𝐴)1 and conclude that 𝐴 is invertible
with 𝐴−1 = 1

det𝐴adj 𝐴. Combining with Corollary 72, we see that a 3×3 matrix 𝐴 is invertible
if and only if det𝐴 ≠ 0.

One of the first vectors we considered were vectors representing polynomials. We consider the
following matrix 𝑉 called a Vandermonde matrix.

𝑉 :=
©­­«

1 1 1
𝑥1 𝑥2 𝑥3

𝑥2
1 𝑥2

2 𝑥2
3

ª®®¬
Let us try and calculate det𝑉 . Since adding to a row a scalar multiple of another column does not
change the determinant, we can add to the third row the middle row times −𝑥1 to get

det𝑉 = det ©­«
1 1 1
𝑥1 𝑥2 𝑥3

𝑥2
1 − 𝑥2

1 𝑥2
2 − 𝑥2𝑥1 𝑥2

3 − 𝑥3𝑥1

ª®¬ = det ©­«
1 1 1
𝑥1 𝑥2 𝑥3
0 𝑥2(𝑥2 − 𝑥1) 𝑥3(𝑥3 − 𝑥1)

ª®¬
Next, we add to the middle row the first row times −𝑥1 to get the following.

det𝑉 = det ©­«
1 1 1
𝑥1 𝑥2 𝑥3
0 𝑥2(𝑥2 − 𝑥1) 𝑥3(𝑥3 − 𝑥1)

ª®¬ = det ©­«
1 1 1
0 𝑥2 − 𝑥1 𝑥3 − 𝑥1
0 𝑥2(𝑥2 − 𝑥1) 𝑥3(𝑥3 − 𝑥1)

ª®¬ (6.20)

Let𝑊 be the rightmost matrix in Equation 6.20. Using the Laplace expansion along column 1 gives

det𝑉 = det𝑊 =

3∑
𝑖=1
(−1)𝑖+1𝑊11 det𝑊11 = (−1)2𝑊11 det𝑊𝑖1 + 0 + 0

= (𝑥2 − 𝑥1)𝑥3(𝑥3 − 𝑥1) − (𝑥3 − 𝑥1)𝑥2(𝑥2 − 𝑥1) = (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2).
The polynomial Δ3 := (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2) is called the degree 3 Vandermonde polynomial.
Challenge 60 Matrix 𝑀 is upper triangular if 𝑀𝑖 𝑗 = 0 whenever 𝑖 > 𝑗. Show that if 𝐴 is an
upper-triangular 3 × 3 matrix then det𝐴 = 𝐴11𝐴22𝐴33.
Challenge 61

(a) A real matrix 𝑂 is orthogonal if 𝑂𝑂T = 1. Show that if 𝑂 is a 3 × 3 orthogonal matrix, then
det𝑂 = ±1.

(b) Show that if 𝐴 is a complex 3 × 3 matrix, then det𝐴† = (det𝐴)∗ (see Challenge 36).
(c) Let complex matrix 𝐻 be a 3 × 3 Hermitian matrix. Show that det𝐻 is a real number.
(d) Let complex matrix𝑈 be a 3 × 3 unitary matrix. Show that |det𝑈| = 1.
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6.4 Operator Transposition

Continuous functions defined on rectangles

The analogue of an interval in two dimensions is a rectangle (Figure 6.21). An open rectangle
(𝑎, 𝑏) × (𝑐, 𝑑) consists of the points (𝑥, 𝑦) ∈ ℝ2 (the plane) such that 𝑥 ∈ (𝑎, 𝑏) and 𝑦 ∈ (𝑐, 𝑑).5 A
closed rectangle [𝑎, 𝑏] × [𝑐, 𝑑] consists of the points (𝑥, 𝑦) ∈ ℝ2 such that 𝑥 ∈ [𝑎, 𝑏] and 𝑦 ∈ [𝑐, 𝑑].6
Replacing the intervals with rectangles, in particular, open intervals with open rectangles gives the
definition of a continuous function defined on a rectangle.

𝑎 𝑏

𝑐

𝑑

(𝑥, 𝑦)

𝑎 𝑏

𝑐

𝑑

(𝑥, 𝑦)

Figure 6.21: An open rectangle (𝑎, 𝑏) × (𝑐, 𝑑) and a closed rectangle [𝑎, 𝑏] × [𝑐, 𝑑].

Definition 73. A real-valued function 𝑓 defined on a rectangle 𝑅 is continuous at 𝑝 := (𝑥, 𝑦) ∈ 𝑅
if for each 𝜖 > 0 there is some 𝛿(𝜖) > 0 such that 𝑓 (𝑞) ∈

(
𝑓 (𝑝) − 𝜖, 𝑓 (𝑝) + 𝜖

)
whenever 𝑞 ∈ 𝑅 is

an element of the open rectangle (𝑥 − 𝜖, 𝑥 + 𝜖) × (𝑦 − 𝜖, 𝑦 + 𝜖).7 Function 𝑓 is continuous if it is
continuous on each 𝑝 ∈ 𝑅.

From the definition, if a real-valued function 𝑓 defined on a closed rectangle 𝑅 := [𝑎, 𝑏] × [𝑐, 𝑑]
is continuous at 𝑝 := (𝑥, 𝑦) ∈ 𝑅, then 𝑔𝑣 : [𝑎, 𝑏] → ℝ defined by 𝑔𝑣 : 𝑥 ↦→ 𝑓 (𝑥, 𝑣) is continuous at
𝑥. Similarly, ℎ𝑢 : [𝑐, 𝑑] → ℝ defined by ℎ𝑢 : 𝑦 ↦→ 𝑓 (𝑢, 𝑦) is continuous at 𝑦. This allows us to port
over results we have obtained from real-valued functions defined on intervals. For example, since
[𝑎, 𝑏] and [𝑐, 𝑑] are closed intervals, the Extreme Value Theorem tells us that the functions 𝑔𝑣 and
ℎ𝑢 attains its maximum and minimum values.

The First Fundamental Theorem of Calculus holds for a continuous real-valued function 𝑓
defined on a closed rectangle [𝑎, 𝑏] × [𝑐, 𝑑].

𝜕1

[∫ 𝑥

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢
]
= 𝑓 (𝑥, 𝑦) 𝜕2

[∫ 𝑦

𝑐

𝑓 (𝑥, 𝑣) 𝑑𝑣
]
= 𝑓 (𝑥, 𝑦) (6.22)

To obtain the first equation, apply the First Fundamental Theorem of Calculus to the continuous
function 𝑓 forgetting the 𝑦 component then adding it in later.

𝜕1

[∫ 𝑥

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢
]
=

d
d𝑥

∫ 𝑥

𝑎

𝑔𝑦(𝑢) 𝑑𝑢 = 𝑔𝑦(𝑥) = 𝑓 (𝑥, 𝑦)

5The endpoints 𝑎 and 𝑐 may take the symbol −∞ and the endpoints 𝑏 and 𝑑 may take the symbol∞.
6The endpoints 𝑎, 𝑏, 𝑐, and 𝑑 must all be real numbers, with 𝑎 < 𝑏 and 𝑐 < 𝑑.
7Recall the definition of a function defined on an interval: 𝑓 : 𝐼 → ℝ is continuous at 𝑝 ∈ 𝐼 if for each 𝜖 > 0 there is

some 𝛿(𝜖) > 0 such that 𝑓 (𝑞) ∈
(
𝑓 (𝑝) − 𝜖, 𝑓 (𝑝) + 𝜖

)
whenever 𝑞 ∈ 𝐼 is an element of the open interval

(
𝑝 − 𝜖, 𝑝 + 𝜖

)
.
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The second equation obtained in a completely analogous fashion.

𝜕2

[∫ 𝑦

𝑐

𝑓 (𝑥, 𝑣) 𝑑𝑣
]
=

d
d𝑦

∫ 𝑦

𝑎

ℎ𝑥(𝑣) 𝑑𝑣 = ℎ𝑥(𝑦) = 𝑓 (𝑥, 𝑦)

The Second Fundamental Theorem of Calculus also holds for a continuous real-valued function
𝑓 defined on a closed rectangle [𝑎, 𝑏] × [𝑐, 𝑑].∫ 𝑏

𝑎

𝜕1 𝑓 (𝑢, 𝑦) 𝑑𝑢 = 𝑓 (𝑏, 𝑦) − 𝑓 (𝑎, 𝑦)
∫ 𝑑

𝑐

𝜕2 𝑓 (𝑥, 𝑣) 𝑑𝑣 = 𝑓 (𝑥, 𝑑) − 𝑓 (𝑥, 𝑐) (6.23)

These are also obtained in a similar fashion as shown below.∫ 𝑏

𝑎

𝜕1 𝑓 (𝑢, 𝑦) 𝑑𝑢 =

∫ 𝑏

𝑎

𝑔′𝑦(𝑢) 𝑑𝑢 = 𝑔𝑦(𝑏) − 𝑔𝑦(𝑎) = 𝑓 (𝑏, 𝑦) − 𝑓 (𝑎, 𝑦)∫ 𝑑

𝑐

𝜕2 𝑓 (𝑥, 𝑣) 𝑑𝑣 =

∫ 𝑑

𝑐

ℎ′𝑥(𝑣) 𝑑𝑣 = ℎ𝑥(𝑑) − ℎ𝑥(𝑐) = 𝑓 (𝑥, 𝑑) − 𝑓 (𝑥, 𝑐)

We return to the definition of a continuous function (Definition 73).8 As is in the case of
functions of a single variable, the value of 𝛿(𝜖) will depend on the point 𝑝. However, it is an
amazing fact that if a real-valued function 𝑓 is defined on a closed rectangle, then the same 𝛿(𝜖)
will work everywhere 𝑓 is defined. Such a function is said to be uniformly continuous.

Definition 74. A real-valued function 𝑓 defined on a rectangle𝑅 is uniformly continuous if for each
𝜖 > 0 there is some 𝛿(𝜖) > 0 such that for each 𝑝 := (𝑥, 𝑦) ∈ 𝑅 we have 𝑓 (𝑞) ∈

(
𝑓 (𝑝) − 𝜖, 𝑓 (𝑝) + 𝜖

)
whenever 𝑞 ∈ 𝑅 is an element of the open rectangle (𝑥 − 𝜖, 𝑥 + 𝜖) × (𝑦 − 𝜖, 𝑦 + 𝜖).

Proposition 75. If 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑] then the following functions are continuous.

𝑔 : 𝑦 ↦→
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢 ℎ : (𝑥, 𝑦) ↦→
∫ 𝑥

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢

Proof. We will take advantage of the fact that 𝑓 is defined on a closed rectangle and is thus unifirmly
continuous. Let 𝜖 > 0; since 𝑓 is uniformly continuous there is some 𝛿(𝜖) > 0 that satisfies uniform
continuity of 𝑓 . Let nonzero 𝛼 satisfy |𝛼| < 𝛿(𝜖); we will show that

��𝑔(𝑦 + 𝛼) − 𝑔(𝑦)
�� < 𝛽 · 𝜖 for

some constant 𝛽. Linearity of the integral gives

��𝑔(𝑦 + 𝛼) − 𝑔(𝑦)
�� = �����∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦 + 𝛼) 𝑑𝑢 −
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢
����� =

�����∫ 𝑏

𝑎

[
𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)

]
𝑑𝑢

����� .
By continuity 𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦) ≤

�� 𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)
�� < 𝜖. Setting 𝛽 := 𝑏 − 𝑎 gives

��𝑔(𝑦 + 𝛼) − 𝑔(𝑦)
�� ≤ �����∫ 𝑏

𝑎

�� 𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)
�� 𝑑𝑢����� <

�����∫ 𝑏

𝑎

𝜖 𝑑𝑢

����� = (𝑏 − 𝑎)𝜖 = 𝛽 · 𝜖.

8Feel free to skip ahead to the statement of the Leibniz integral rule and then continuing to Fubini’s Theorem.
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Next, we show that ℎ is continuous at each point (𝑥, 𝑦) ∈ [𝑎, 𝑏]×[𝑐, 𝑑]. Let 𝜖 > 0 and let 𝛿1(𝜖) > 0
satisfy uniform continuity of 𝑓 . Take 𝛿 ↦→ min(𝛿1 , 𝜖). Let 𝛼 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) and 𝛽 ∈ (𝑦 − 𝛿, 𝑦 + 𝛿).
We use Property (P1) of an integral to break up the first integral then use linearity to get

ℎ(𝑥, 𝑦) − ℎ(𝛼, 𝛽) =
∫ 𝑥

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢 −
∫ 𝛼

𝑎

𝑓 (𝑢, 𝛽) 𝑑𝑢

=

[∫ 𝛼

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢 +
∫ 𝑥

𝛼
𝑓 (𝑢, 𝑦) 𝑑𝑢

]
−

∫ 𝛼

𝑎

𝑓 (𝑢, 𝛽) 𝑑𝑢

=

∫ 𝛼

𝑎

[
𝑓 (𝑢, 𝑦) − 𝑓 (𝑢, 𝛽)

]
𝑑𝑢 +

∫ 𝑥

𝛼
𝑓 (𝑢, 𝑦) 𝑑𝑢.

By uniform continuity of 𝑓 , whenever |𝑦 − 𝛽| < 𝛿 we know that | 𝑓 (𝑢, 𝑦) − 𝑓 (𝑢, 𝛽)| < 𝜖. Hence����∫ 𝛼

𝑎

| 𝑓 (𝑢, 𝑦) − 𝑓 (𝑢, 𝛽)| 𝑑𝑢
���� < ����∫ 𝛼

𝑎

𝜖 𝑑𝑢

���� = (𝛼 − 𝑎)𝜖 < (𝑏 − 𝑎)𝜖.

By the Extreme Value Theorem, function 𝑓 with 𝑦 fixed is bounded from above by some constant
𝑀 > 0. By construction |𝑥 − 𝛼| < 𝛿 ≤ 𝜖 and so����∫ 𝑥

𝛼
𝑓 (𝑢, 𝑦) 𝑑𝑢

���� ≤ ����∫ 𝑥

𝛼
𝑀 𝑑𝑢

���� = 𝑀|𝑥 − 𝛼| < 𝑀𝜖.

The triangle inequality gives the following.��ℎ(𝑥, 𝑦) − ℎ(𝛼, 𝛽)�� ≤ ����∫ 𝛼

𝑎

�� 𝑓 (𝑢, 𝑦) − 𝑓 (𝑢, 𝛽)�� 𝑑𝑢���� + ����∫ 𝑥

𝛼
𝑓 (𝑢, 𝑦) 𝑑𝑢

���� < (𝑏 − 𝑎 +𝑀)𝜖
Since (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑]was arbitrary, we conclude that ℎ is continuous.

Switching operators
We now consider the question of switching partial derivatives and integrals. We have already

seen the switching of a partial derivative with an integral called differentiation under the integral sign.
This is also called the Leibniz integral rule.

Theorem 76 (Leibniz Integral Rule). Let 𝑓 and 𝜕2 𝑓 be continuous on [𝑎, 𝑏] × [𝑐, 𝑑]. The function
𝑔 : 𝑦 ↦→

∫ 𝑏

𝑎
𝑓 (𝑢, 𝑦) 𝑑𝑢 is differentiable with

𝑔′(𝑦) =
∫ 𝑏

𝑎

𝜕2 𝑓 (𝑢, 𝑦) 𝑑𝑢.

Proof. Let 𝜖 > 0; since 𝜕2 𝑓 is continuous on [𝑎, 𝑏]×[𝑐, 𝑑], we know that 𝜕2 𝑓 is uniformly continuous
and there is some 𝛿(𝜖) > 0 that satisfies uniform continuity of 𝑓 . We will show that for each nonzero
𝛼 with |𝛼| < 𝛿(𝜖)we have ����� 𝑔(𝑦 + 𝛼) − 𝑔(𝑦)

𝛼
−

∫ 𝑏

𝑎

𝜕2 𝑓 (𝑢, 𝑦) 𝑑𝑢
����� < 𝛽 · 𝜖
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for some constant 𝛽. By linearity of the integral,

𝑔(𝑦 + 𝛼) − 𝑔(𝑦)
𝛼

=
1
𝛼

(∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦 + 𝛼) 𝑑𝑢 −
∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢
)
=

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)
𝛼

𝑑𝑢

and so

𝑔(𝑦 + 𝛼) − 𝑔(𝑦)
𝛼

−
∫ 𝑏

𝑎

𝜕2 𝑓 (𝑢, 𝑦) 𝑑𝑢 =

∫ 𝑏

𝑎

[
𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)

𝛼
− 𝜕2 𝑓 (𝑢, 𝑦)

]
𝑑𝑢.

We want to turn the quotient 𝑓 (𝑢,𝑦+𝛼)− 𝑓 (𝑢,𝑦)
𝛼 into a partial derivative. Let 𝐼 := (𝑥, 𝑥 + 𝛼) if 𝛼 > 0

and 𝐼 := (𝑥 + 𝛼, 𝑥) otherwise. We know from the Mean Value Theorem (Theorem 40) that if 𝑓
is differentiable on 𝐼, then there will be a point 𝑝 ∈ 𝐼 where the velocity will attain the average
velocity 𝑓 (𝑢,𝑦+𝛼)− 𝑓 (𝑢,𝑦)

𝛼 . Thus∫ 𝑏

𝑎

[
𝑓 (𝑢, 𝑦 + 𝛼) − 𝑓 (𝑢, 𝑦)

𝛼
− 𝜕2 𝑓 (𝑢, 𝑦)

]
𝑑𝑢 =

∫ 𝑏

𝑎

[
𝜕2 𝑓 (𝑢, 𝑝) − 𝜕2 𝑓 (𝑢, 𝑦)

]
𝑑𝑢.

By uniform continuity of 𝜕2 𝑓 we know that
��𝜕2 𝑓 (𝑝, 𝑦) − 𝜕2 𝑓 (𝑢, 𝑦)

�� < 𝜖 whenever (𝑝, 𝑦) ∈ (𝑢 − 𝛿, 𝑢 +
𝛿) × (𝑦 − 𝛿, 𝑦 + 𝛿), which is satisfied. Set 𝛽 := (𝑏 − 𝑎) and we obtain the desired result.����� 𝑔(𝑦 + 𝛼) − 𝑔(𝑦)

𝛼
−

∫ 𝑏

𝑎

𝜕2 𝑓 (𝑢, 𝑦) 𝑑𝑢
����� <

�����∫ 𝑏

𝑎

𝜖 𝑑𝑦

����� = (𝑏 − 𝑎)𝜖 = 𝛽 · 𝜖

Next, we consider the switching of integrals. We will call this result Fubini’s Theorem (the
name really belongs to a far stronger result).

Theorem 77 (Fubini’s Theorem). If 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑] then∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣 =

∫ 𝑏

𝑎

(∫ 𝑑

𝑐

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢. (6.24)

Proof. We will take an approach similar to that of the Second Fundamental Theorem of Calculus.
The function 𝑦 ↦→

∫ 𝑏

𝑎
𝑓 (𝑢, 𝑦) 𝑑𝑢 is continuous and so the Fundamental Theorem of Calculus gives

𝜕2

[∫ 𝑦

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣

]
=

∫ 𝑏

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢. (6.25)

The function (𝑥, 𝑦) ↦→
∫ 𝑥

𝑎
𝑓 (𝑢, 𝑦) 𝑑𝑢 is continuous and so we may apply the Fundamental Theorem

of Calculus to get 𝜕2
∫ 𝑦

𝑐
𝑓 (𝑢, 𝑣) 𝑑𝑣 = 𝑓 (𝑢, 𝑦). Integrate both sides over the first variable 𝑢 on the

interval [𝑎, 𝑏] and then apply the Leibniz integral rule to pull out the partial derivative to get

𝜕2

[∫ 𝑏

𝑎

(∫ 𝑦

𝑐

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢

]
=

∫ 𝑑

𝑎

𝑓 (𝑢, 𝑦) 𝑑𝑢. (6.26)
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The partial derivatives in Equation 6.25 and Equation 6.26 are equal and so they can only differ by
a constant 𝛾 by Corollary 41 and so∫ 𝑦

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣 =

∫ 𝑏

𝑎

(∫ 𝑦

𝑐

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢 + 𝛾.

Taking 𝑦 := 𝑐 and using Property (P3) of an integral gives us∫ 𝑦

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣︸                         ︷︷                         ︸

= 0

=

∫ 𝑏

𝑎

(∫ 𝑦

𝑐

𝑓 (𝑢, 𝑣) 𝑑𝑢
)

︸               ︷︷               ︸
= 0

𝑑𝑣 + 𝛾.

Therefore 𝛾 = 0. Making the substitution of the symbol 𝑦 ↦→ 𝑑 gives Equation 6.24.

That covers switching integrals and switching a partial derivative with an integral. All that is
left is to consider the case of switching mixed partial derivatives 𝜕1𝜕2 and 𝜕2𝜕1. We will use the
symbol 𝜕𝑖 , 𝑗 to mean 𝜕𝑗𝜕𝑖 (first take the partial derivative with respect to the 𝑖-th variable, then take
the partial derivative with respect to the 𝑗-th variable). This result is called Clairaut’s Theorem.

Theorem 78 (Clairaut’s Theorem). Let 𝜕2 𝑓 and 𝜕2,1 𝑓 be continuous on [𝑎, 𝑏]×[𝑐, 𝑑] and let 𝜕1 𝑓 (𝑥, 𝑐)
exist for each 𝑥 ∈ (𝑎, 𝑏). Then both 𝜕1 𝑓 and 𝜕1,2 𝑓 exist on the open rectangle (𝑎, 𝑏) × (𝑐, 𝑑) with
𝜕1,2 𝑓 = 𝜕2,1 𝑓 .

Proof. Since 𝜕2 𝑓 is continuous, the Fundamental Theorem of Calculus gives

𝑓 (𝑥, 𝑦) =
∫ 𝑦

𝑐

𝜕2 𝑓 (𝑥, 𝑣) 𝑑𝑣 + 𝑓 (𝑥, 𝑐).

The partial derivative 𝜕1 𝑓 (𝑥, 𝑐) exists by assumption and the function 𝑦 ↦→
∫ 𝑦

𝑐
𝜕2 𝑓 (𝑥, 𝑣) is differen-

tiable by the Leibniz integral rule. Therefore, 𝜕1 𝑓 (𝑥, 𝑦) exists for each point (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑)
and we have

𝜕1 𝑓 (𝑥, 𝑦) = 𝜕1

∫ 𝑦

𝑐

𝜕2 𝑓 (𝑥, 𝑣) 𝑑𝑣 + 𝜕1 𝑓 (𝑥, 𝑐).

Since 𝜕2 𝑓 and 𝜕2,1 𝑓 are continuous, we may apply the Leibniz integral rule to get

𝜕1 𝑓 (𝑥, 𝑦) =
∫ 𝑦

𝑐

𝜕2,1 𝑓 (𝑥, 𝑣) 𝑑𝑣 + 𝜕1 𝑓 (𝑥, 𝑐). (6.27)

The first term on the right side is differentiable with respect to the second variable 𝑣 by the
Fundamental Theorem of Calculus with 𝜕2

∫ 𝑦

𝑐
𝜕2,1 𝑓 (𝑥, 𝑣) 𝑑𝑣 = 𝜕2,1 𝑓 (𝑥, 𝑦). The second term on the

right side is a constant function with respect to the second variable and is thus differentiable with
respect to the second variable with 𝜕2

[
𝜕1 𝑓 (𝑥, 𝑐)

]
= 0. Therefore, the left side is differentiable with

respect to the second variable, demonstrating that 𝜕1,2 𝑓 exists on the open rectangle (𝑎, 𝑏) × (𝑐, 𝑑).
Taking a partial derivative with respect to the second variable on both sides of Equation 6.27 gives
the desired equality

𝜕1,2 𝑓 (𝑥, 𝑦) = 𝜕2,1 𝑓 (𝑥, 𝑦).
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𝑥

𝑧

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

Figure 6.28: An open rectangle in ℝ3.

The analogue of an open interval in three dimensions is an open rectangle (𝑎, 𝑏) × (𝑐, 𝑑) × (𝑒 , 𝑜),
which are the collection of points (𝑥, 𝑦, 𝑧) ∈ ℝ3 such that 𝑥 ∈ (𝑎, 𝑏), 𝑦 ∈ (𝑐, 𝑑), and 𝑧 ∈ (𝑒 , 𝑜). The
definition of a continuous function defined on ℝ3 is analogous to the two dimensional case.

If 𝑓 is a real-valued function defined on an open rectangle 𝑅 in ℝ3, we say that 𝑓 ∈ 𝒞 1 on 𝑅 if
𝜕1 𝑓 , 𝜕2 𝑓 , 𝜕3 𝑓 all exist and are continuous. If in addition 𝜕𝑖 , 𝑗 𝑓 exists for each 𝑖 , 𝑗 ∈ {1, 2, 3} and are
all continuous, then we say that 𝑓 ∈ 𝒞 2 on 𝑅. In a similar manner, we say that 𝑓 ∈ 𝒞 𝑟 on 𝑅 if for
each 𝑘 ∈ {1, 2, 3}, 𝜕𝑘 𝑓 ∈ 𝒞 𝑟−1 on 𝑅.

If 𝑓 ∈ 𝒞 3, then we may use Clairaut’s Theorem repeatedly to conclude that the mixed partials
𝜕𝑖 , 𝑗 ,𝑘 for distinct 𝑖 , 𝑗 , 𝑘 ∈ {1, 2, 3} all exist and must equal.9 This is familiar from the algebra of 𝑑□,
as the sequence 𝑖 , 𝑗 , 𝑘 describes a permutation and each permutation is a product of transpositions.
Thus each 𝜕𝑖𝜕𝑗𝜕𝑘 𝑓 can be attained by applying Clairaut’s Theorem to the sequence of transpositions
that turn 𝜎 into the identity permutation in 𝑆3. For example, 𝜕3,2,1 𝑓 = 𝜕1,2,3 𝑓 because

𝜕1𝜕2𝜕3 𝑓 = 𝜕1𝜕3𝜕2 𝑓 = 𝜕3𝜕1𝜕2 𝑓 = 𝜕3𝜕2𝜕1 𝑓 . (6.29)

This generalizes to 𝑓 ∈ 𝒞 𝑟 where 𝑟 > 3, and of course permutation of integrals also works in a
similar fashion.

6.5 Grad, Curl, Div, and Laplacian

Forms in ℝ3

We have been dealing with scalar-valued functions so far.10 We turn to vector fields, which are
vector-valued functions 𝑓 : 𝑅 → ℝ𝑛 , where 𝑅 is some open rectangle in ℝ𝑛 . For what follows we
always take 𝑛 = 3. The simplest nontrivial vector field we could consider are the following.

𝑝 : ©­«
𝑥1
𝑥2
𝑥3

ª®¬ ↦→ ©­«
𝑥1
0
0

ª®¬ 𝑞 : ©­«
𝑥1
𝑥2
𝑥3

ª®¬ ↦→ ©­«
0
𝑥2
0

ª®¬ 𝑟 : ©­«
𝑥1
𝑥2
𝑥3

ª®¬ ↦→ ©­«
0
0
𝑥3

ª®¬
These vector fields simply zero out two components of each input vector 𝑥 ∈ ℝ3. The derivative
of 𝑝 is given by 𝑝′ =

(
1 0 0

)
. Notice the derivative is (a function and) not a vector. Similarly,

𝑞′ =
(
0 1 0

)
and 𝑟′ =

(
0 0 1

)
. The derivatives 𝑝′, 𝑞′, and 𝑟′ are constant functions that are

essentially the standard basis vectors 𝑒1, 𝑒2, and 𝑒3, respectively. So we can write each vector 𝑥 ∈ ℝ3

9In analogy to the two dimensional case, the notation 𝜕𝑖 , 𝑗 ,𝑘 means 𝜕𝑘𝜕𝑗𝜕𝑖 .
10This section a little algebra-heavy. Feel free to skip ahead to Section 6.7.
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as the linear combination 𝑥 = 𝑥1𝑝
′ + 𝑥2𝑞

′ + 𝑥3𝑟
′. We denote 𝑝′, 𝑞′, and 𝑟′ by the symbols 𝑑𝑥1, 𝑑𝑥2,

and 𝑑𝑥3 respectively, so that each vector 𝑥 ∈ ℝ3 can be written as

𝑥 =

3∑
𝑖=1

𝑥𝑖 𝑑𝑥𝑖 . (6.30)

Summing two vectors 𝑢, 𝑣 ∈ ℝ3 and applying a scalar multiplication by 𝑐 are straightforward:

𝑢 + 𝑣 =

3∑
𝑖=1

𝑢𝑖 𝑑𝑥𝑖 +
3∑
𝑖=1

𝑣𝑖 𝑑𝑥𝑖 =

3∑
𝑖=1
(𝑢𝑖 + 𝑣𝑖) 𝑑𝑥𝑖 𝑐 · 𝑢 = 𝑐

3∑
𝑖=1

𝑢𝑖 𝑑𝑥𝑖 =

3∑
𝑖=1

𝑐 · 𝑢𝑖 𝑑𝑥𝑖 .

How about multiplying two vectors? We do not know of a way to multiply two vectors in ℝ3.
However, we have worked with vector multiplication in ℝ2 through the complex numbers and
dual numbers (Section 5.3). In fact, we have already extended the dual numbers by using it to
obtaining the Change of Variables formula in two and three dimensions.

So let us try and apply the algebra of 𝑑□ to vector multiplication.11 We will denote the vector
multiplication by the symbol ∧ called a wedge product. As we have done with the algebra of 𝑑□,
we will build up from simple vectors in ℝ3. Recall that 𝑑□𝑑□ = 0. Therefore, if two vectors 𝑢 and
𝑣 only have a single 𝑖-th component, then

𝑢 ∧ 𝑣 := (𝑢𝑖 𝑑𝑥𝑖) ∧ (𝑣𝑖 𝑑𝑥𝑖) = (𝑢𝑖𝑣𝑖) 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖 = 0.

As we want the group action of scalar multiplication to work nicely with the ∧ product, we require
that (𝑢𝑖 𝑑𝑥𝑖) ∧ (𝑣 𝑗 𝑑𝑥 𝑗) = (𝑢𝑖𝑣 𝑗) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 . For example, 𝑢𝑖 ∧ 𝑣𝑖 = 𝑢𝑖𝑣𝑖 .

On the other hand, if 𝑖 ≠ 𝑗 and 𝑣 = 𝑣 𝑗𝑑𝑥 𝑗 , we use the fact that 𝑑♠ 𝑑♣ = − 𝑑♣ 𝑑♠ to get

𝑢 ∧ 𝑣 := (𝑢𝑖 𝑑𝑥𝑖) ∧ (𝑣 𝑗 𝑑𝑥 𝑗) = (𝑢𝑖𝑣 𝑗) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 = −(𝑢𝑖𝑣 𝑗) 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖 .

For 𝑖 , 𝑗 , 𝑘 ∈ {1, 2, 3} and 𝑢 = 𝑢𝑖 𝑑𝑥𝑖 , 𝑣 = 𝑣 𝑗 𝑑𝑥 𝑗 , 𝑤 = 𝑤𝑘 𝑑𝑥𝑘 we have

(𝑢 ∧ 𝑣) ∧ 𝑤 =
[
(𝑢𝑖𝑣 𝑗) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗

]
∧ 𝑤𝑘 𝑑𝑥𝑘 = (𝑢𝑖𝑣 𝑗𝑤𝑘) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 = 𝑢 ∧ (𝑣 ∧ 𝑤)

Of course if at least one pair of 𝑖 , 𝑗 , 𝑘 are equal in the above then (𝑢 ∧ 𝑣) ∧ 𝑤 = 𝑤 ∧ (𝑢 ∧ 𝑣) = 0.
Manipulations with dual numbers gave us (𝑑♣ + 𝑑♠) 𝑑♥ = 𝑑♣ 𝑑♥ + 𝑑♠ 𝑑r and 𝑑♥(𝑑♣ + 𝑑♠) =

𝑑♥ 𝑑♣ + 𝑑♥ 𝑑♠. Hence if 𝜔1, 𝜔2 are forms then the following distributive laws hold.

(𝑑𝑥𝑖 + 𝑑𝑥 𝑗) ∧ 𝑑𝑥𝑘 = 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑘 + 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 𝑑𝑥𝑖 ∧ (𝑑𝑥 𝑗 + 𝑑𝑥𝑘) = 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 + 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑘

Adding a coefficient in front of the symbols gives us the following distributive laws.

( 𝑓 𝑑𝑥𝑖 + 𝑔 𝑑𝑥 𝑗) ∧ ℎ 𝑑𝑥𝑘 = ( 𝑓 𝑔) 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑘 + ( 𝑓 ℎ) 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘
𝑓 𝑑𝑥𝑖 ∧ (𝑔 𝑑𝑥 𝑗 + ℎ 𝑑𝑥𝑘) = ( 𝑓 𝑔) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 + ( 𝑓 ℎ) 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑘

To distinguish 𝑑𝑥1, 𝑑𝑥2, and 𝑑𝑥3 from our regular vectors, we will call our objects using the
following terminology. Let 𝑓 , 𝑔, and ℎ be real-valued functions defined on a rectangle in ℝ3.

11This is why we denoted the functions 𝑝′, 𝑞′, and 𝑟′ by the symbols 𝑑𝑥1, 𝑑𝑥2, and 𝑑𝑥3.
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(a) A 1-form denotes objects of the form 𝑓 𝑑𝑥1 + 𝑔 𝑑𝑥2 + ℎ 𝑑𝑥3.
(b) A 2-form denotes objects of the form 𝑓 𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑔 𝑑𝑥1 ∧ 𝑑𝑥3 + ℎ 𝑑𝑥2 ∧ 𝑑𝑥3.
(c) A 3-form denotes objects of the form 𝑓 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.

Hence a 𝑘-form (for 𝑘 ∈ {1, 2, 3}) is the linear combination of terms that are formed by taking 𝑘
number of ∧ products. A 0-form will thus simply denote a real-valued function 𝑓 .

Repeating the previous manipulations tells us that if 𝜔 and 𝜂 are 𝑘-forms then

(𝜔 + 𝜂) ∧ ℎ 𝑑𝑥𝑖 = 𝜔 ∧ (ℎ 𝑑𝑥𝑖) + 𝜂 ∧ (ℎ 𝑑𝑥𝑖)
(𝜔 + 𝜂) ∧ ℎ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 = 𝜔 ∧ (ℎ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗) + 𝜂 ∧ (ℎ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗).

A 1-form has a simple interpretation, as it is equivalent to a vector field by Equation 6.30.
Indeed, each vector field 𝑓 := ( 𝑓1 , 𝑓2 , 𝑓3) can be turned into a 1-form 𝜔 := 𝑓1 𝑑𝑥1 + 𝑓2 𝑑𝑥2 + 𝑓3 𝑑𝑥.
Conversely, each 1-form 𝜔 := 𝑔1 𝑑𝑥1+ 𝑔2 𝑑𝑥2+ 𝑔3 𝑑𝑥 can turned into the vector field 𝑔 := (𝑔1 , 𝑔2 , 𝑔3).

Exterior derivative
Recall the key equation from our discussion of the Change of Variables formula,

𝑑𝑓 = 𝜕𝑥 𝑓 𝑑𝑥 + 𝜕𝑦 𝑓 𝑑𝑦 + 𝜕𝑧 𝑓 𝑑𝑧.

This is an application of a “derivative" 𝑑 on a 0-form to get a 1-form. We will thus define the
exterior derivative of a 0-form 𝑓 to be the 1-form 𝑑𝑓 given by the following.12

𝑑𝑓 :=
3∑
𝑖=1

𝜕𝑖 𝑓 𝑑𝑥𝑖

Thus if 𝑓 : (𝑥1 , 𝑥2 , 𝑥3) ↦→ 𝑥2
1𝑥3 + 𝑥2𝑥3 then the exterior derivative of the 0-form 𝑓 is the 1-form

𝑑𝑓 = 2𝑥1𝑥3 𝑑𝑥1 + 𝑥3 𝑑𝑥2 + (𝑥2
1 + 𝑥2) 𝑑𝑥3. Similarly, for the 0-form 𝑥𝑖 : (𝑥1 , 𝑥2 , 𝑥3) ↦→ 𝑥𝑖 the exterior

derivative 𝑑(𝑥𝑖) = 𝑑𝑥𝑖 .
The exterior derivative of a 0-form is given by taking derivates, tacking on the symbols 𝑑□ and

summing. Analogously, we will define the exterior derivative of a 1-form 𝜔 𝑓 corresponding to the
vector field 𝑓 := ( 𝑓1 , 𝑓2 , 𝑓3) as follows.13

𝑑𝜔 𝑓 =

∑
1≤𝑖≤3

𝑑𝑓𝑖 ∧ 𝑑𝑥𝑖

We can evaluate the above explicitly using the fact that 𝑑𝑓𝑖 :=
∑3
𝑗=1 𝜕𝑗 𝑓𝑖 𝑑𝑥 𝑗 and 𝑑𝑥𝑖∧𝑑𝑥 𝑗 = −𝑑𝑥 𝑗∧𝑑𝑥𝑖 .

𝑑𝜔 𝑓 =

∑
1≤𝑖≤3

𝑑𝑓𝑖 ∧ 𝑑𝑥𝑖 =
∑

1≤𝑖≤3

3∑
𝑗=1

𝜕𝑗 𝑓𝑖 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖

=(((((((
𝜕1 𝑓1 𝑑𝑥1 ∧ 𝑑𝑥1 + 𝜕2 𝑓1 𝑑𝑥2 ∧ 𝑑𝑥1 + 𝜕3 𝑓1 𝑑𝑥3 ∧ 𝑑𝑥1

+ 𝜕1 𝑓2 𝑑𝑥1 ∧ 𝑑𝑥2 +(((((((
𝜕2 𝑓2 𝑑𝑥2 ∧ 𝑑𝑥2 + 𝜕3 𝑓2 𝑑𝑥3 ∧ 𝑑𝑥2

+ 𝜕1 𝑓3 𝑑𝑥1 ∧ 𝑑𝑥3 + 𝜕2 𝑓3 𝑑𝑥2 ∧ 𝑑𝑥3 +(((((((
𝜕3 𝑓3 𝑑𝑥3 ∧ 𝑑𝑥3

=
(
𝜕2 𝑓3 − 𝜕3 𝑓2

)
𝑑𝑥2 ∧ 𝑑𝑥3 +

(
𝜕3 𝑓1 − 𝜕1 𝑓3

)
𝑑𝑥3 ∧ 𝑑𝑥1 +

(
𝜕1 𝑓2 − 𝜕2 𝑓1

)
𝑑𝑥1 ∧ 𝑑𝑥2

12We will always assume that 𝑓 ∈ 𝒞 𝑟 for sufficiently high 𝑟. That is, enough continuous partial derivatives exist.
13(1) Take an exterior derivative of each 𝑓𝑖 (2) do a wedge product with 𝑑𝑥𝑖 and (3) sum.
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Challenge 62
(a) The ordering of the terms above may seem out of order, but it is written to be easier to

recognize. Let ★𝑑𝑥1 := 𝑑𝑥2 ∧ 𝑑𝑥3, ★𝑑𝑥2 := 𝑑𝑥3 ∧ 𝑑𝑥1, and ★𝑑𝑥3 := 𝑑𝑥1 ∧ 𝑑𝑥2. Check that
𝑑𝑥𝑖 ∧★𝑑𝑥𝑖 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. Use the Laplace expansion over row 1 to verify that

𝑑𝜔 𝑓 = det ©­«
★𝑑𝑥1 ★𝑑𝑥2 ★𝑑𝑥3
𝜕1 𝜕2 𝜕3
𝑓1 𝑓2 𝑓3

ª®¬ .
(b) Use the fact that 𝜕𝑖𝜕𝑗ℎ = 𝜕𝑗𝜕𝑖ℎ to show that if 𝑓 is a 0-form then 𝑑(𝑑𝑓 ) = 0. [Hint: it suffices

to check that 𝑑𝜔𝑔 = 0 where 𝜔𝑔 :=
∑3

1 𝑔𝑖 𝑑𝑥𝑖 with 𝑔𝑖 := 𝜕𝑖 𝑓 .]
Let 𝑓12, 𝑓13, and 𝑓23 be real-valued functions defined on a rectangle in ℝ3 with the necessary

continuous partial derivatives and let 𝑓 := ( 𝑓12 , 𝑓13 , 𝑓23). We define the exterior derivative of a
2-form 𝜂

𝑓
:= 𝑓12 𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑓13 𝑑𝑥1 ∧ 𝑑𝑥3 + 𝑓23 𝑑𝑥2 ∧ 𝑑𝑥3, denoted 𝑑𝜂 𝑓 by the following.

𝑑𝜂 𝑓 :=
∑

1≤𝑖< 𝑗≤3
𝑑𝑓𝑖 𝑗 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗

The above must reduce down to a single term because all 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 are equivalent (up to a
sign) or 0 in ℝ3. We do the simplification as we did with the exterior derivative of a 1-form.

𝑑𝜂 𝑓 :=
∑

1≤𝑖< 𝑗≤3
𝑑𝑓𝑖 𝑗 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 =

∑
1≤𝑖< 𝑗≤3

3∑
𝑘=1

𝜕𝑘 𝑓𝑖 𝑗 𝑑𝑥𝑘 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗

= 𝜕3 𝑓12 𝑑𝑥3 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 + 𝜕2 𝑓13 𝑑𝑥2 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 + 𝜕1 𝑓23 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3

=
(
𝜕1 𝑓23 − 𝜕2 𝑓13 + 𝜕3 𝑓12

)
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3

The reason we have two indices on 𝑓𝑖 𝑗 is to help us remember that the function pairs with 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 .
We further simplify into a single index. A 2-form in ℝ3 can be written as 𝜂𝑔 := 𝑔1 ★𝑑𝑥1 + 𝑔2 ★𝑑𝑥2 +
𝑔3 ★𝑑𝑥3. This is equivalent to our previous representation 𝜂

𝑓
:=

∑
1≤𝑖< 𝑗≤3 𝑓𝑖 𝑗 𝑑𝑥𝑖∧𝑑𝑥 𝑗 with 𝑔1 := 𝑓23,

𝑔2 = − 𝑓13, and 𝑔3 := 𝑓12. Using these substitutions, the exterior derivative of 𝜂𝑔 is then

𝑑𝜂𝑔 =
(
𝜕1𝑔1 + 𝜕2𝑔2 + 𝜕3𝑔3

)
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.

The exterior derivative of a 3-form 𝛼 := 𝑓123 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 is defined analogously as

𝑑𝛼 :=
∑

1≤𝑖< 𝑗<𝑘≤3
𝑑𝑓𝑖 𝑗𝑘 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 .

Proposition 79. Each 𝑘-form 𝜔 in ℝ3 satisfies 𝑑(𝑑𝜔) = 0.

Proof. The case for 𝑘 = 0 was left for you in Challenge 62. Let 𝜔 𝑓 be a 1-form corresponding to the
vector field 𝑓 := ( 𝑓1 , 𝑓2 , 𝑓3). Define

𝑔1 :=
(
𝜕2 𝑓3 − 𝜕3 𝑓2

)
𝑔2 :=

(
𝜕3 𝑓1 − 𝜕1 𝑓3

)
𝑔3 :=

(
𝜕1 𝑓2 − 𝜕2 𝑓1

)
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so that

𝜕1𝑔1 = 𝜕1𝜕2 𝑓3 − 𝜕1𝜕3 𝑓2 𝜕2𝑔2 = 𝜕2𝜕3 𝑓1 − 𝜕2𝜕1 𝑓3 𝜕3𝑔3 := 𝜕3𝜕1 𝑓2 − 𝜕3𝜕2 𝑓1.

Then

𝑑(𝑑𝜔 𝑓 ) = 𝑑
[ (
𝜕2 𝑓3 − 𝜕3 𝑓2

)
𝑑𝑥2 ∧ 𝑑𝑥3 +

(
𝜕3 𝑓1 − 𝜕1 𝑓3

)
𝑑𝑥3 ∧ 𝑑𝑥1 +

(
𝜕1 𝑓2 − 𝜕2 𝑓1

)
𝑑𝑥1 ∧ 𝑑𝑥2

]
= 𝑑

[
𝑔1 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝑔2 𝑑𝑥3 ∧ 𝑑𝑥1 + 𝑔3 𝑑𝑥1 ∧ 𝑑𝑥2

]
=

[
𝜕1𝑔1 + 𝜕2𝑔2 + 𝜕3𝑔3

]
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3

=
[
𝜕1𝜕2 𝑓3 − 𝜕1𝜕3 𝑓2 + 𝜕2𝜕3 𝑓1 − 𝜕2𝜕1 𝑓3 + 𝜕3𝜕1 𝑓2 − 𝜕3𝜕2 𝑓1

]
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.

By Clairaut’s Theorem (equality of mixed partials) the terms in the brackets vanish and so 𝑑(𝑑𝜔 𝑓 ) =
0. The exterior derivative of a 3-form 𝛼 := 𝑓123 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 in ℝ3 is always zero:

𝑑𝛼 :=
∑

1≤𝑖< 𝑗<𝑘≤3
𝑑𝑓𝑖 𝑗𝑘 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 =

∑
1≤𝑖< 𝑗<𝑘≤3

3∑
𝑙=1

𝜕𝑙 𝑓𝑖 𝑗𝑘𝑑𝑥𝑙 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 = 0

and since the exterior derivative of a 2-form 𝜂 was shown to be a 3-form, 𝑑(𝑑𝜂) = 0.

We cannot have 4-forms in ℝ3, but in ℝ𝑛 , we can have 𝑟-forms for 𝑟 ∈ {0, 1, 2, . . . , 𝑛}. If 𝑛 ≥ 4
we can define the exterior derivative of a 4-form 𝛼 :=

∑
1≤𝑖< 𝑗<𝑘<𝑙≤𝑛 𝑓𝑖 𝑗𝑘𝑙 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑥𝑙 by

𝑑𝛼 :=
∑

1≤𝑖< 𝑗<𝑘<𝑙≤𝑛
𝑑𝑓𝑖 𝑗𝑘𝑙 ∧ 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 ∧ 𝑑𝑥𝑙 .

where the exterior derivative of a 0-form is 𝑑𝑓 :=
∑𝑛
𝑖=1 𝜕𝑖 𝑓 𝑑𝑥𝑖 . The exterior derivative of a 𝑘-form

𝛼 :=
∑

1≤𝑖1<···<𝑖𝑘≤𝑛 𝑓𝑖1···𝑖𝑘 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 for 𝑘 ≤ 𝑛 should then be defined as the following.

𝑑𝛼 :=
∑

1≤𝑖1<···<𝑖𝑘≤𝑛
𝑑𝑓𝑖1···𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 (6.31)

To recap, in ℝ3 the exterior derivative of a 0-form 𝑓 is

𝑑𝑓 = 𝜕1 𝑓 𝑑𝑥1 + 𝜕2 𝑓 𝑑𝑥2 + 𝜕3 𝑓 𝑑𝑥3. (6.32)

The exterior derivative of a 1-form 𝜔 𝑓 :=
∑3
𝑖=1 𝑓𝑖 𝑑𝑥𝑖 is

𝑑𝜔 𝑓 =
(
𝜕2 𝑓3 − 𝜕3 𝑓2

)
𝑑𝑥2 ∧ 𝑑𝑥3 +

(
𝜕3 𝑓1 − 𝜕1 𝑓3

)
𝑑𝑥3 ∧ 𝑑𝑥1 +

(
𝜕1 𝑓2 − 𝜕2 𝑓1

)
𝑑𝑥1 ∧ 𝑑𝑥2. (6.33)

Finally, the exterior derivative of a 2-form 𝜂
𝑓

:=
∑3
𝑖=1 𝑓𝑖 ★𝑑𝑥𝑖 is

𝑑𝜂 𝑓 =
(
𝜕1 𝑓1 + 𝜕2 𝑓2 + 𝜕3 𝑓3

)
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. (6.34)

The coefficients of 1-form 𝑑𝑓 vectorized is the gradient of a real-valued function 𝑓 , written ∇ 𝑓 . For
a vector field 𝒇 = ( 𝑓1 , 𝑓2 , 𝑓3), the coefficients of 2-form 𝑑𝜔 𝒇 vectorized is called the curl of 𝒇 and
is written ∇ × 𝒇 . For a vector field 𝒇 = ( 𝑓1 , 𝑓2 , 𝑓3), the coefficient of the 3-form 𝑑𝜂 𝒇 is called the
divergence of 𝒇 and is written ∇ · 𝒇 .

∇ 𝑓 := ©­«
𝜕1 𝑓
𝜕2 𝑓
𝜕3 𝑓

ª®¬ ∇ × 𝒇 := ©­«
𝜕2 𝑓3 − 𝜕3 𝑓2
𝜕3 𝑓1 − 𝜕1 𝑓3
𝜕1 𝑓2 − 𝜕2 𝑓1

ª®¬ ∇ · 𝒇 := 𝜕1 𝑓1 + 𝜕2 𝑓2 + 𝜕3 𝑓3
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Challenge 63 Use the fact that 𝑑(𝑑𝛼) = 0 to conclude that ∇ ×
(
∇ 𝑓

)
= 0 and ∇ ·

(
∇ × 𝒇

)
= 0.

The notation★𝑑𝑥𝑖 was defined by the equation 𝑑𝑥𝑖 ∧★𝑑𝑥𝑖 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. We now apply the
★ symbol (Hodge star) to 𝑘-forms in ℝ3. If 𝛼 := 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 for distinct 𝑖 , 𝑗, then ★𝛼 is defined by the
equation 𝛼 ∧★𝛼 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. Thus

★(𝑑𝑥1 ∧ 𝑑𝑥2) = 𝑑𝑥3 ★(𝑑𝑥2 ∧ 𝑑𝑥3) = 𝑑𝑥1 ★(𝑑𝑥3 ∧ 𝑑𝑥1) = 𝑑𝑥2.

A Hodge star only acts on the objects 𝑑𝑥𝑖 . For example,

★
(
𝑓1 𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑓2 𝑑𝑥3 ∧ 𝑑𝑥1

)
= 𝑓1 ★(𝑑𝑥1 ∧ 𝑑𝑥2) + 𝑓2 ★(𝑑𝑥3 ∧ 𝑑𝑥1).

As a 0-form has no 𝑑𝑥𝑖 and a 3-form has all the symbols 𝑑𝑥 𝑗 , for each 0-form 𝑓 and 3-form 𝛼𝑔 ,

★ 𝑓 = 𝑓 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 ★𝛼𝑔 = 𝑔.

Challenge 64 Show that if 𝜔 𝒇 is a 1-form where 𝒇 := ( 𝑓1 , 𝑓2 , 𝑓3) then the following hold.

★𝑑𝜔 𝑓 =

∑
𝑖

[
∇ × 𝒇

]
𝑖
𝑑𝑥𝑖 := 𝜔

∇× 𝒇 ★𝑑★𝜔 𝑓 =

∑
𝑖

[
∇ · 𝒇

]
𝑑𝑥𝑖 := 𝜔

∇· 𝒇

Challenge 65 How about using the wedge product to define a vector multiplication? By Equa-
tion 6.30 a 1-form corresponds to a vector. But taking the wedge product of 1-forms gives us a
2-form, so we must take a Hodge star to get it back to a 1-form. Let 𝛼 be a 1-form corresponding
to the vector (𝑎1 , 𝑎2 , 𝑎3)T and let 𝛽 be a 1-form corresponding to the vector (𝑏1 , 𝑏2 , 𝑏3)T. Check that

★(𝛼 ∧ 𝛽) = det ©­«
𝑑𝑥1 𝑑𝑥2 𝑑𝑥3
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

ª®¬ .
We write 𝛼 × 𝛽 := ★(𝛼 ∧ 𝛽). Let 𝑣 and 𝑤 be the vectors corresponding to 1-forms 𝛼 and 𝛽,
respectively. Then the vector corresponding to 𝜔𝛼×𝛽 is called the cross product of 𝑣 and 𝑤.
Check that 𝑣 × 𝑤 = −𝑤 × 𝑣 and 𝑣 × 𝑤 = 0 if 𝑤 = 𝑐 · 𝑤 for some constant 𝑐. Let 𝑋 := (𝑥, 𝑦, 𝑧)
and 𝑃 := (−𝑖ℏ𝜕1 ,−𝑖ℏ𝜕2 ,−𝑖ℏ𝜕3). Show that the angular momentum operator in three dimensions
𝐿 := 𝐿𝑥 + 𝐿𝑦 + 𝐿𝑧 is equal to 𝐿 = 𝑋 × 𝑃 (relevant definitions given in Page 127).

Laplacian
We saw that there are three fundamental operators in ℝ3: the gradient of a real-valued function,

the curl of a vector field, and the divergence of a vector field. Let us see what happens when we
combine these together.

There are nine possible pairs, but not all of them are permissible. For example, the curl of a
divergence of a vector field makes no sense because the divergence of a vector field is a real-valued
function, and we cannot take the curl of a real-valued function. Similarly we cannot take the
divergence of a divergence of a vector field because the divergence is not defined for a real-valued
function in ℝ3. As a gradient is only defined for a real-valued function, it also makes no sense to
consider the gradient of a gradient and the gradient of a curl.

Therefore, there are a grand total of five possibilities: gradient of a divergence, curl of a gradient,
curl of a curl, divergence of a gradient, and divergence of a curl. In symbols, for a real-valued
function 𝑓 and a vector field 𝒇 , the possibilities are the following.

∇
(
∇ · 𝒇

)
∇×

(
∇ 𝑓

)
∇×

(
∇ × 𝒇

)
∇·

(
∇ 𝑓

)
∇·

(
∇ × 𝒇

)
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We know from Challenge 63 that the curl of a gradient and the divergence of a curl always
vanish. This is an immediate consequence of the fact that the exterior derivative of an exterior
derivative vanishes. Alternatively, we can invoke Clairaut’s Theorem directly as shown below.

∇ ×
(
∇ 𝑓

)
= ∇ ×

©­«
𝜕1 𝑓
𝜕2 𝑓
𝜕3 𝑓

ª®¬ =
©­«
𝜕2𝜕3 𝑓 − 𝜕3𝜕2 𝑓
𝜕3𝜕1 𝑓 − 𝜕1𝜕3 𝑓
𝜕1𝜕2 𝑓 − 𝜕2𝜕1 𝑓

ª®¬ =
©­«
0
0
0

ª®¬
∇ ·

(
∇ × 𝒇

)
= ∇ ·

©­«
𝜕2 𝑓3 − 𝜕3 𝑓2
𝜕3 𝑓1 − 𝜕1 𝑓3
𝜕1 𝑓2 − 𝜕2 𝑓1

ª®¬ = 𝜕1(𝜕2 𝑓3 − 𝜕3 𝑓2) + 𝜕2(𝜕3 𝑓1 − 𝜕1 𝑓3) + 𝜕3(𝜕1 𝑓2 − 𝜕2 𝑓1) = 0

Challenge 66 For a real-valued function 𝑓 and a vector field 𝒇 := ( 𝑓1 , 𝑓2 , 𝑓3), show that

∇
(
∇ · 𝒇

)
=

©­«
𝜕1,1 𝑓1 + 𝜕2,1 𝑓2 + 𝜕3,1 𝑓3
𝜕1,2 𝑓1 + 𝜕2,2 𝑓2 + 𝜕3,2 𝑓3
𝜕1,3 𝑓1 + 𝜕2,3 𝑓2 + 𝜕3,3 𝑓3

ª®¬ ∇ ×
(
∇ × 𝒇

)
=

©­«
𝜕1,2 𝑓2 − 𝜕2,2 𝑓1 − 𝜕3,3 𝑓1 + 𝜕1,3 𝑓3
𝜕2,3 𝑓3 − 𝜕3,3 𝑓2 − 𝜕1,1 𝑓2 + 𝜕2,1 𝑓1
𝜕3,1 𝑓1 − 𝜕1,1 𝑓3 − 𝜕2,2 𝑓3 + 𝜕3,2 𝑓2

ª®¬ (6.35)

The gradient of a divergence and a curl of a curl do not appear to have a nice form. However,
calculating the divergence of gradient shows that it is none other than the Laplacian

∇ ·
(
∇ 𝑓

)
= ∇ ·

©­«
𝜕1 𝑓
𝜕2 𝑓
𝜕3 𝑓

ª®¬ = 𝜕1,1 𝑓 + 𝜕2,2 𝑓 + 𝜕3,3 𝑓 = ∇2 𝑓 .

We have seen the Laplacian in the three dimensional Schrödinger Equation 𝑖ℏ𝜕𝑡Ψ = − ℏ2

2𝑚∇2Ψ+𝑉Ψ.
If we subtract the curl of a curl from a gradient of a divergence using Equation 6.35, we have

∇
(
∇ · 𝒇

)
− ∇ ×

(
∇ × 𝒇

)
=

©­«
𝜕1,1 𝑓1 + 𝜕2,2 𝑓1 + 𝜕3,3 𝑓1
𝜕1,1 𝑓2 + 𝜕2,2 𝑓2 + 𝜕3,3 𝑓2
𝜕1,1 𝑓3 + 𝜕2,2 𝑓3 + 𝜕3,3 𝑓3

ª®¬ (6.36)

which also looks like a Laplacian, albeit for a vector field. We will thus define the Laplacian of a
vector field ∇2 𝒇 by Equation 6.36.

6.6 Integral Theorems

Oriented integrals

As we have talked about derivatives, it is natural to talk about integration.14 Consider a 3-form
𝜔 𝑓 := 𝑓 (𝑥) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 defined on an open rectangle 𝑈 in ℝ3. For each closed rectangle 𝑅
contained in𝑈 , we define the (oriented) integral of 𝜔 𝑓 over 𝑅 as∫

𝑅

𝜔 𝑓 :=
∭

𝑅

𝑓 (𝑥) 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 =

∫
𝑅

𝑓 .

14This section is not essential for the rest of the book. Fell free to skip ahead to Section 6.7.
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In general, a 3-form in ℝ3 can take the form 𝑓 (𝑥) 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 , where distinct 𝑖 , 𝑗 , 𝑘 ∈ {1, 2, 3}
are in any order. However, this is not a problem, as we can permute the indices into the order
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 by adding in the necessary sign. For example,

𝑓 (𝑥) 𝑑𝑥2 ∧ 𝑑𝑥3 ∧ 𝑑𝑥1 = − 𝑓 (𝑥) 𝑑𝑥2 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 = 𝑓 (𝑥) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.

Therefore, ∭
𝑅

𝑓 (𝑥) 𝑑𝑥𝑖 𝑑𝑥 𝑗 𝑑𝑥𝑘 = sgn
(
𝑖 𝑗 𝑘
1 2 3

) ∫
𝑅

𝑓

where "sgn 𝜎" of a permutation 𝜎 is the sign of permutation 𝜎.
As an example, suppose we have a 3-form 𝜔 𝑓 := 𝑓 (𝑥) 𝑑𝑥2 ∧ 𝑑𝑥3 ∧ 𝑑𝑥1 defined on an open

rectangle 𝑈 in ℝ3. If we want to integrate 𝜔 𝑓 over a closed rectangle 𝑅 := [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑒 , 𝑜]
contained in the rectangle𝑈 , we calculate the integral∫

𝑅

𝜔 𝑓 = sgn
(
2 3 1
1 2 3

) ∫ 𝑜

𝑒

(∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥1

)
𝑑𝑥2

)
𝑑𝑥3.

We may use Fubini’s Theorem to switch the order of integration if it makes life easier. For example,∫ 𝑜

𝑒

(∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥1

)
𝑑𝑥2

)
𝑑𝑥3 =

∫ 𝑜

𝑒

(∫ 𝑏

𝑎

(∫ 𝑑

𝑐

𝑓 (𝑥) 𝑑𝑥2

)
𝑑𝑥1

)
𝑑𝑥3.

Let us take a step back and think about what an oriented integral is in one dimension. The
analogue of a closed rectangle is of course a closed interval 𝐼 := [𝑎, 𝑏], where 𝑎 < 𝑏. So if we wish
to integrate a 1-form 𝑓 (𝑥) 𝑑𝑥 in ℝ, then ∫

𝐼

𝑓 =

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Recall that we can also integrate from 𝑏 to 𝑎. This was the analogue of calculating displacement of
a marathon runner by running the video backwards. Since our runner is now running backwards,
we need a minus sign. Thus if 𝐽 := [𝑏, 𝑎]with 𝑏 < 𝑎, then∫

𝐽

𝑓 = −
∫
𝐼

𝑓 = −
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

If function 𝑓 has an antiderivative, we can use the Fundamental Theorem of Calculus to evaluate
the integral.

In fact, we can be more direct. Adapting the definition of an exterior derivative of a 0-form in
ℝ3 into the one-dimensional case tells us that if 𝑓 is a differentiable 0-form in ℝ, then 𝑑𝑓 = 𝑓 ′(𝑥) 𝑑𝑥.
We can integrate this over the interval 𝐼 := [𝑎, 𝑏] to get∫

𝐼

𝑑𝑓 =

∫
𝐼

𝑓 ′(𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎

𝑓 ′(𝑥) 𝑑𝑥.

(Of course if 𝑏 > 𝑎, we can integrate over the interval [𝑏, 𝑎] and add in a minus sign.) The
Fundamental Theorem of Calculus then tells us that∫ 𝑏

𝑎

𝑓 ′(𝑥) 𝑑𝑥 = 𝑓 (𝑏) − 𝑓 (𝑎).
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With the notable exception of the Gaussian integrals, all functions we integrated had an antideriva-
tive. Thus it will be quite sufficient to only consider integrals of exterior derivatives.

Now let us try the same, but in two dimensions. Suppose we have two closed intervals 𝐼 := [𝑎, 𝑏]
and 𝐽 := [𝑐, 𝑑]. We can place these intervals on the plane as shown in the figure below. The interval
𝐼 becomes a set 𝛾1 := 𝐼 × {𝑐} on the plane and the interval 𝐽 becomes a set 𝛾2 := {𝑏} × 𝐽 on the
plane. If we consider these sets as paths, then we can connect the two paths and call their sum
𝛾. Of course, we not actually taking a sum 𝛾1 + 𝛾2 = 𝛾, we are simply noting that joining the two
paths makes one path.

𝛾1
𝛾2

𝑎 𝑏

𝑐

𝑑

If we have a 0-form 𝑓 ∈ 𝐶1 defined on the plane, then its exterior derivative is given by

𝑑𝑓 = 𝜕1 𝑓 (𝑥, 𝑦) 𝑑𝑥 + 𝜕2 𝑓 (𝑥, 𝑦) 𝑑𝑦.

We can take the integral of this 1-form over the path 𝛾 using the linearity of the integral and
considering the two pieces of the path separately as follows.∫

𝛾
𝑑𝑓 =

∫
𝛾1+𝛾2

𝜕1 𝑓 (𝑥, 𝑦) 𝑑𝑥 + 𝜕2 𝑓 (𝑥, 𝑦) 𝑑𝑦 =

∫
𝛾1

𝜕1 𝑓 (𝑥, 𝑦) 𝑑𝑥 +
∫
𝛾2

𝜕2 𝑓 (𝑥, 𝑦) 𝑑𝑦

On the path 𝛾1, the 𝑦-value is fixed at 𝑐. Furthermore, 𝑓 ∈ 𝒞 1 and so 𝜕1 𝑓 (𝑥, 𝑦) is continuous. We
can apply the Fundamental Theorem of Calculus to get∫

𝛾1

𝜕1 𝑓 (𝑥, 𝑦) 𝑑𝑥 =

∫ 𝑏

𝑎

𝜕1 𝑓 (𝑥, 𝑐) 𝑑𝑥 = 𝑓 (𝑏, 𝑐) − 𝑓 (𝑎, 𝑐).

Repeating for the path 𝛾1 gives
∫
𝛾2
𝜕2 𝑓 (𝑥, 𝑦) 𝑑𝑥 = 𝑓 (𝑏, 𝑑) − 𝑓 (𝑏, 𝑐). Therefore,∫

𝛾
𝑑𝑓 = 𝑓 (𝑏, 𝑐) − 𝑓 (𝑎, 𝑐) + 𝑓 (𝑏, 𝑑) − 𝑓 (𝑏, 𝑐) = 𝑓 (𝑏, 𝑑) − 𝑓 (𝑎, 𝑐)

which is just like the Fundamental Theorem of Calculus, except at the plane!

𝛾3

𝛾4

𝑎 𝑏

𝑐

𝑑
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Challenge 67
(a) Consider the paths 𝛾3 := 𝐼 × {𝑑} and 𝛾4 := {𝑎} × 𝐽 with the orientations shown above. Notice

the orientations are opposite from the usual orientation. Let 𝛾̄ := 𝛾3 + 𝛾4 be the path formed
by joining the paths 𝛾3 and 𝛾4. Show that

∫
𝛾̄
𝑑𝑓 = 𝑓 (𝑎, 𝑐) − 𝑓 (𝑏, 𝑑), just as we would expect.

(b) Let 𝛾̃ := 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 (see Figure 6.37). Show that
∫
𝛾̃
𝑑𝑓 = 0.

Green’s Theorem
We upgrade from integrating over paths to integrating over rectangles. Merging the paths

𝛾1, 𝛾2, 𝛾3, 𝛾4 into one path 𝛾 encloses a surface (rectangle) 𝑆 := [𝑎, 𝑏] × [𝑐, 𝑑] (Figure 6.37). The
orientation of a surface is determined by the orientation of the enclosing path. We will take the
orientation of 𝛾 to be counterclockwise so that beginning from the bottom left corner, we first move
to the right along the orientation of the 𝑥-axis, then move up along the orientation of the 𝑦-axis.

𝛾3

𝛾4 𝛾1
𝛾2

𝑎 𝑏

𝑐

𝑑

Figure 6.37: A surface 𝑆 enclosed in a closed path 𝛾 := 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4.

Suppose we have a 1-form 𝜔 := 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 with 𝑓 , 𝑔 ∈ 𝒞 1 defined in an open rectangle 𝑈 in
ℝ2 that contains 𝑆. The exterior derivative of 𝜔 is as follows.

𝑑𝜔 = 𝑑𝑓 ∧𝑑𝑥+𝑑𝑔∧𝑑𝑦 =������
𝜕𝑥 𝑓 𝑑𝑥 ∧ 𝑑𝑥+𝜕𝑦 𝑓 𝑑𝑦∧𝑑𝑥+𝜕𝑥 𝑔 𝑑𝑥∧𝑑𝑦+������𝜕𝑦 𝑔 𝑑𝑦 ∧ 𝑑𝑦 =

(
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

)
𝑑𝑥∧𝑑𝑦

Adapting the definition of an oriented integral of a 3-form in ℝ3 to an oriented integral of a 2-form
in ℝ2 gives the following. ∫

𝑆

𝑑𝜔 =

∫ 𝑑

𝑐

(∫ 𝑏

𝑎

[
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

]
𝑑𝑥

)
𝑑𝑦

Let us use the linearity of the integral to calculate each term in the integral separately. By the
Fundamental Theorem of Calculus and the linearity of the integral,∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕𝑥 𝑔 𝑑𝑥

)
𝑑𝑦 =

∫ 𝑑

𝑐

𝑔(𝑏, 𝑦) − 𝑔(𝑎, 𝑦) 𝑑𝑦 =

∫ 𝑑

𝑐

𝑔(𝑏, 𝑦) 𝑑𝑦 +
∫ 𝑐

𝑑

𝑔(𝑎, 𝑦) 𝑑𝑦.

Notice each integral on the right is an oriented integral on the path 𝛾2 and 𝛾4, respectively. Hence∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕𝑥 𝑔 𝑑𝑥

)
𝑑𝑦 =

∫
𝛾2

𝑔(𝑥, 𝑦) 𝑑𝑦 +
∫
𝛾4

𝑔(𝑥, 𝑦) 𝑑𝑦. (6.38)

In fact, we say a bit more. By property (P3) of an integral,
∫
𝛾1
𝑔(𝑥, 𝑦) 𝑑𝑦 =

∫ 𝑐

𝑐
𝑔(𝑥, 𝑐) 𝑑𝑦 = 0 and∫

𝛾3
𝑔(𝑥, 𝑦) 𝑑𝑦 =

∫ 𝑑

𝑑
𝑔(𝑥, 𝑑) 𝑑𝑦 = 0. Adding terms that are zero to the right side of Equation 6.38
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changes nothing. Therefore,∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕𝑥 𝑔 𝑑𝑥

)
𝑑𝑦 =

∫
𝛾1+𝛾2+𝛾3+𝛾4

𝑔(𝑥, 𝑦) 𝑑𝑦 =

∫
𝛾
𝑔(𝑥, 𝑦) 𝑑𝑦.

Challenge 68 Use Fubini’s Theorem (Theorem 77), the Fundamental Theorem of Calculus, and
the linearity of the integral to show that∫ 𝑑

𝑐

(∫ 𝑏

𝑎

−𝜕𝑦 𝑓 (𝑥, 𝑦) 𝑑𝑥
)
𝑑𝑦 =

∫
𝛾3

𝑓 (𝑥, 𝑦) 𝑑𝑥 +
∫
𝛾1

𝑓 (𝑥, 𝑦) 𝑑𝑥.

Since
∫
𝛾2
𝑓 (𝑥, 𝑦) 𝑑𝑥 +

∫
𝛾4
𝑓 (𝑥, 𝑦) 𝑑𝑥 = 0, we see that

∫ 𝑑

𝑐

(∫ 𝑏

𝑎
−𝜕𝑦 𝑓 (𝑥, 𝑦) 𝑑𝑥

)
𝑑𝑦 =

∫
𝛾
𝑓 (𝑥, 𝑦) 𝑑𝑥. Con-

clude that Green’s Theorem, shown below, holds.∫
𝑆

𝑑𝜔 =

∫
𝛾
𝜔 (6.39)

Kelvin-Stokes Theorem
Just as we combined intervals in a plane to make a path, and then combined paths to obtain a

surface, we will now try merging surfaces on the plane into a surface in ℝ3.

𝑥

𝑧
𝛾14 𝛾12

𝛾13

𝛾11

𝑎 𝑏

𝑜

𝑐
𝑑

𝑥

𝑧

𝑦 𝛾22
𝛾24

𝛾23

𝛾21

𝑏

𝑒

𝑜

𝑐
𝑑

𝑥

𝑧

𝛾34 𝛾32
𝛾31

𝛾33

𝑎 𝑏

𝑒

𝑜

Figure 6.40: Surfaces 𝑆1, 𝑆2, and 𝑆3 with 𝑧 values, 𝑥 values, and 𝑦 values held constant, respectively.

Each surface in Figure 6.40 are essentially rectangles on a plane. The first surface 𝑆1 := [𝑎, 𝑏] ×
[𝑐, 𝑑] × {𝑜} is a rectangle with 𝑧-values fixed at 𝑧 = 𝑜. The second surface 𝑆2 := {𝑏} × [𝑐, 𝑑] × [𝑒 , 𝑜]
is a rectangle with 𝑥-values fixed at 𝑥 = 𝑏. The third surface 𝑆3 := [𝑎, 𝑏] × {𝑐} × [𝑒 , 𝑜] is a
rectangle with 𝑦-values fixed at 𝑦 = 𝑐. Let us assume that each rectangle 𝑆𝑖 is enclosed by path
𝛾𝑖 := 𝛾𝑖1 + 𝛾𝑖2 + 𝛾𝑖3 + 𝛾𝑖4 with the orientations shown in Figure 6.40.

We calculate the integral of the exterior derivative of 1-form 𝜔 := 𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 + ℎ 𝑑𝑧, with
𝑓 , 𝑔, ℎ ∈ 𝒞 1, over each surface. For the rectangle 𝑆1, we have∫

𝑆1

𝑑𝜔 =

∬
𝑆1
((((((((((
𝜕𝑦ℎ − 𝜕𝑧 𝑔

)
𝑑𝑦 𝑑𝑧 +((((((((((

𝜕𝑧 𝑓 − 𝜕𝑥ℎ
)
𝑑𝑧 𝑑𝑥 +

(
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

)
𝑑𝑥 𝑑𝑦

where the integrands integrated over 𝑧 vanish because 𝑧 is a fixed constant. The integral∬
𝑆1

(
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

)
𝑑𝑥 𝑑𝑦 =

∫ 𝑑

𝑐

∫ 𝑏

𝑎

(
𝜕𝑥 𝑔(𝑥, 𝑦, 𝑜) − 𝜕𝑦 𝑓 (𝑥, 𝑦, 𝑜)

)
𝑑𝑥 𝑑𝑦
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is the surface integral of the 2-form
(
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

)
𝑑𝑥 ∧ 𝑑𝑦 on the surface 𝑆1 with the orientation of

surface 𝑆1 as shown in Figure 6.40. By Green’s Theorem,∫
𝑆1

𝑑𝜔 =

∬
𝑆1

(
𝜕𝑥 𝑔 − 𝜕𝑦 𝑓

)
𝑑𝑥 𝑑𝑦 =

∫
𝛾1

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦.

Since we know that
∫
𝛾1
ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧 =

∫ 𝑜

𝑜
ℎ(𝑥, 𝑦, 𝑜) 𝑑𝑧 = 0, we have∫

𝑆1

𝑑𝜔 =

∫
𝛾1

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑔(𝑥, 𝑦, 𝑧) 𝑑𝑦 + ℎ(𝑥, 𝑦, 𝑧) 𝑑𝑧 =
∫
𝛾1

𝜔.

The calculations over the surfaces 𝑆2 and 𝑆3 are completely analogous. We simply note that∬
𝑆2
𝜙(𝑥, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 =

∫ 𝑜

𝑒

∫ 𝑑

𝑐
𝜙(𝑏, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 is the surface integral of the 2-form 𝜙 𝑑𝑦 ∧ 𝑑𝑧 over the

surface 𝑆2 = {𝑏}×[𝑐, 𝑑]×[𝑒 , 𝑜]with the orientation of surface 𝑆2 as shown in Figure 6.40. Similarly,∬
𝑆3
𝜓(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑧 =

∫ 𝑜

𝑒

∫ 𝑏

𝑎
𝜓(𝑥, 𝑑, 𝑧) 𝑑𝑥 𝑑𝑧 is the surface integral of the 2-form 𝜓 𝑑𝑧 ∧ 𝑑𝑥 over the

surface 𝑆2 = [𝑎, 𝑏] × {𝑑} × [𝑒 , 𝑜]with the orientation of surface 𝑆3 as shown in Figure 6.40. As each
rectangle 𝑆𝑖 are rectangles on a plane, we can apply Green’s Theorem to get∫

𝑆2

𝑑𝜔 =

∫
𝛾2

𝜔

∫
𝑆3

𝑑𝜔 =

∫
𝛾3

𝜔.

Now consider the surface 𝑆 obtained by merging the rectangles 𝑆1, 𝑆2, and 𝑆3 as shown in
Figure 6.41 below. By linearity, the integral

∫
𝑆
𝑑𝜔 is the sum

∫
𝑆1
𝑑𝜔 +

∫
𝑆2
𝑑𝜔 +

∫
𝑆3
𝑑𝜔.

𝑎 𝑏

𝑐

𝑑

Figure 6.41: Surface 𝑆 formed by merging surfaces 𝑆1, 𝑆2, and 𝑆3.

Using the equalities obtained before, we have∫
𝑆

𝑑𝜔 =

∫
𝑆1

𝑑𝜔 +
∫
𝑆2

𝑑𝜔 +
∫
𝑆3

𝑑𝜔 =

∫
𝛾1

𝜔 +
∫
𝛾2

𝜔 +
∫
𝛾3

𝜔.

But we can go one step further. Observe that the paths 𝛾11 and 𝛾33 overlap completely, with opposite
orientation. This means that

∫
𝛾11

𝜔 +
∫
𝛾33

𝜔 = 0. The same goes for the paths 𝛾12, 𝛾23 and the paths
𝛾24, 𝛾32. Incorporating these cancellations, we have the equality∫

𝛾1

𝜔 +
∫
𝛾2

𝜔 +
∫
𝛾3

𝜔 =

∫
𝛾31

𝜔 +
∫
𝛾21

𝜔 +
∫
𝛾22

𝜔 +
∫
𝛾13

𝜔 +
∫
𝛾14

𝜔 +
∫
𝛾34

𝜔.
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The paths listed in the integrals on the right are precisely those that enclose surface 𝑆 in Figure 6.41.
Taking 𝛾 to be the sum of the paths that enclose surface 𝑆, we obtain the Kelvin-Stokes Theorem.∫

𝑆

𝑑𝜔 =

∫
𝛾
𝜔

Divergence Theorem

Finally, we consider merging surfaces to enclose a volume. Once we start merging surfaces to
enclose volumes, there is a fixed convention for the orientation of the surfaces. Each orientation of
the surfaces will be shown in the figures to follow.

We consider the exterior derivative of a 2-form 𝜂 := 𝑓 𝑑𝑦 ∧ 𝑑𝑧 + 𝑔 𝑑𝑧 ∧ 𝑑𝑥 + ℎ 𝑑𝑥 ∧ 𝑑𝑦, which we
will integrate over a volume. The exterior derivative of 𝜂 is

𝑑𝜂 = 𝜕1 𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 + 𝜕2𝑔 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 + 𝜕3ℎ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

The volume integral of 𝑑𝜂 over the cube 𝑉 := [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑒 , 𝑜] (see Figure 6.42) is given by∫
𝑉

𝑑𝜂 =

∫
𝑉

(
𝜕1 𝑓 + 𝜕2𝑔 + 𝜕3ℎ

)
𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

As before, we break up the integral and consider each of the three terms separately. Using the
definition of an oriented integral of a 3-form in ℝ3 and applying the Fundamental Theorem of
Calculus gives∫

𝑉

𝜕1 𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 :=
∫ 𝑜

𝑒

∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕1 𝑓 𝑑𝑥

)
𝑑𝑦 𝑑𝑧 =

∫ 𝑜

𝑒

∫ 𝑑

𝑐

𝑓 (𝑏, 𝑦, 𝑧) − 𝑓 (𝑎, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

=

∫ 𝑜

𝑒

∫ 𝑑

𝑐

𝑓 (𝑏, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 −
∫ 𝑜

𝑒

∫ 𝑑

𝑐

𝑓 (𝑎, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧.

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

Figure 6.42: Faces 𝑆1 and 𝑆2 of a cube in ℝ3 where 𝑥 values are held constant.

The integral
∫ 𝑜

𝑒

∫ 𝑑

𝑐
𝑓 (𝑏, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 is the surface integral of the 2-form 𝑓 𝑑𝑦 ∧ 𝑑𝑧 over the face

𝑆1 := {𝑏} × [𝑐, 𝑑] × [𝑒 , 𝑜]. Similarly, the integral
∫ 𝑜

𝑒

∫ 𝑑

𝑐
𝑓 (𝑎, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 is the surface integral of the

2-form 𝑓 𝑑𝑦 ∧ 𝑑𝑧 over the face 𝑆2 := {𝑎} × [𝑐, 𝑑] × [𝑒 , 𝑜]. However, surface 𝑆2 is (by convention)
oriented in the opposite direction of surface 𝑆1. Thus the integral of 𝑓 𝑑𝑦∧ 𝑑𝑧 over surface 𝑆2 needs
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an extra minus sign. Putting these together, we have∫
𝑉

𝜕1 𝑓 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫ 𝑜

𝑒

∫ 𝑑

𝑐

𝑓 (𝑏, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧 −
∫ 𝑜

𝑒

∫ 𝑑

𝑐

𝑓 (𝑎, 𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

=

∫
𝑆1

𝑓 𝑑𝑦 ∧ 𝑑𝑧 +
∫
𝑆2

𝑓 𝑑𝑦 ∧ 𝑑𝑧 =
∫
𝑆1∪𝑆2

𝑓 𝑑𝑦 ∧ 𝑑𝑧.

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

Figure 6.43: Faces 𝑆3 and 𝑆4 of a cube in ℝ3 where 𝑦 values are held constant.

Next is the volume integral of 𝜕2𝑔 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧. We use Fubini’s Theorem to switch the order
of integration so that we can integrate over 𝑦 first.∫

𝑉

𝜕2𝑔 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫ 𝑜

𝑒

∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕2𝑔 𝑑𝑥

)
𝑑𝑦 𝑑𝑧 =

∫ 𝑜

𝑒

∫ 𝑏

𝑎

(∫ 𝑑

𝑐

𝜕2𝑔 𝑑𝑦

)
𝑑𝑥 𝑑𝑧

We can now use the Fundamental Theorem of Calculus to get∫
𝑉

𝜕2𝑔 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫ 𝑜

𝑒

∫ 𝑏

𝑎

𝑔(𝑥, 𝑑, 𝑧) − 𝑔(𝑥, 𝑐, 𝑧) 𝑑𝑥 𝑑𝑧

=

∫ 𝑜

𝑒

∫ 𝑏

𝑎

𝑔(𝑥, 𝑑, 𝑧) 𝑑𝑥 𝑑𝑧 −
∫ 𝑜

𝑒

∫ 𝑏

𝑎

𝑔(𝑥, 𝑐, 𝑧) 𝑑𝑥 𝑑𝑧.

The integral
∫ 𝑜

𝑒

∫ 𝑏

𝑎
𝑔(𝑥, 𝑑, 𝑧) 𝑑𝑥 𝑑𝑧 is the surface integral of the 2-form 𝑔 𝑑𝑧 ∧ 𝑑𝑥 over the surface

𝑆3 := [𝑎, 𝑏] × {𝑑} × [𝑒 , 𝑜]. Similarly, the integral
∫ 𝑜

𝑒

∫ 𝑏

𝑎
𝑔(𝑥, 𝑐, 𝑧) 𝑑𝑥 𝑑𝑧 is the surface integral of the

2-form 𝑔 𝑑𝑧 ∧ 𝑑𝑥 over the surface 𝑆4 := [𝑎, 𝑏] × {𝑐} × [𝑒 , 𝑜]. Once again, because the surface 𝑆4 is
oriented in the opposite direction of 𝑆3, it needs an extra minus sign. We thus have∫

𝑉

𝜕2𝑔 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫ 𝑜

𝑒

∫ 𝑏

𝑎

𝑔(𝑥, 𝑑, 𝑧) 𝑑𝑥 𝑑𝑧 −
∫ 𝑜

𝑒

∫ 𝑏

𝑎

𝑔(𝑥, 𝑐, 𝑧) 𝑑𝑥 𝑑𝑧 =
∫
𝑆3∪𝑆4

𝑔 𝑑𝑧 ∧ 𝑑𝑥.

Finally, we calculate the volume integral of the 3-form 𝜕3ℎ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧. The calculation
is analogous to the previous ones. Applying Fubini’s Theorem, the Fundamental Theorem of
Calculus, and the linearity of the integral gives∫

𝑉

𝜕3ℎ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫ 𝑜

𝑒

∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝜕3ℎ 𝑑𝑥

)
𝑑𝑦 𝑑𝑧 =

∫ 𝑑

𝑐

∫ 𝑏

𝑎

(∫ 𝑜

𝑒

𝜕3ℎ 𝑑𝑧

)
𝑑𝑥 𝑑𝑦

=

∫ 𝑑

𝑐

∫ 𝑏

𝑎

ℎ(𝑜, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 −
∫ 𝑑

𝑐

∫ 𝑏

𝑎

ℎ(𝑒 , 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦.
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The former is a surface integral of the 2-form ℎ 𝑑𝑥 ∧ 𝑑𝑦 over the surface 𝑆5 := [𝑎, 𝑏] × [𝑐, 𝑑] × {𝑜}.
The latter is a surface integral of the 2-form ℎ 𝑑𝑥 ∧ 𝑑𝑦 over the surface 𝑆6 := [𝑎, 𝑏] × [𝑐, 𝑑] × {𝑒}with
the orientation of 𝑆5. We conclude that∫

𝑉

𝜕3ℎ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 =
∫
𝑆5∪𝑆6

ℎ 𝑑𝑥 ∧ 𝑑𝑦.

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

𝑎 𝑏

𝑒

𝑜

𝑐
𝑑

Figure 6.44: Faces 𝑆5 and 𝑆6 of a cube in ℝ3 where 𝑧 values are held constant.

Let 𝑆 := 𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5 ∪ 𝑆6 be the surface that encloses the cube 𝑉 . The integrals∫
𝑆3
𝑓 𝑑𝑦 ∧ 𝑑𝑧 and

∫
𝑆4
𝑓 𝑑𝑦 ∧ 𝑑𝑧 vanish because 𝑦 is assumed to be a constant in 𝑆3 and 𝑆4, but we

are integrating over 𝑦. The integrals
∫
𝑆5
𝑓 𝑑𝑦 ∧ 𝑑𝑧 and

∫
𝑆6
𝑓 𝑑𝑦 ∧ 𝑑𝑧 similarly vanish and so∫

𝑆1

𝑓 𝑑𝑦 ∧ 𝑑𝑧 +
∫
𝑆2

𝑓 𝑑𝑦 ∧ 𝑑𝑧 =
∫
𝑆

𝑓 𝑑𝑦 ∧ 𝑑𝑧.

The same reasoning gives the following equalities.∫
𝑆3∪𝑆4

𝑔 𝑑𝑧 ∧ 𝑑𝑥 =

∫
𝑆

𝑔 𝑑𝑧 ∧ 𝑑𝑥
∫
𝑆5∪𝑆6

ℎ 𝑑𝑥 ∧ 𝑑𝑦 =

∫
𝑆

ℎ 𝑑𝑥 ∧ 𝑑𝑦

By the linearity of the integral,∫
𝑉

𝑑𝜂 =

∫
𝑆1∪𝑆2

𝑓 𝑑𝑦 ∧ 𝑑𝑧 +
∫
𝑆3∪𝑆4

𝑔 𝑑𝑧 ∧ 𝑑𝑥 +
∫
𝑆5∪𝑆6

ℎ 𝑑𝑥 ∧ 𝑑𝑦

=

∫
𝑆

𝑓 𝑑𝑦 ∧ 𝑑𝑧 +
∫
𝑆

𝑔 𝑑𝑧 ∧ 𝑑𝑥 +
∫
𝑆

ℎ 𝑑𝑥 ∧ 𝑑𝑦 =

∫
𝑆

𝜂

and we obtain the Divergence Theorem. ∫
𝑉

𝑑𝜂 =

∫
𝑆

𝜂

Continuity equation
The Divergence Theorem relates an integral over a surface to an integral over a volume. As an

application, consider a charge density 𝜌 which is a real-valued function that describes the electric
charge per unit volume at each position. The total charge in the volume𝑉 enclosed within a closed
rectangular surface 𝑆 is given by the integral

∭
𝑉
𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧.
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The charge density may change over time, and the current density 𝑱 := (𝐽1 , 𝐽2 , 𝐽3) describes the
charge per unit time that passes each position per unit area. The total amount of charge that passes
through the surface 𝑆 is then given by the integral

∫
𝑆
𝐽1 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽2 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽3 𝑑𝑥 ∧ 𝑑𝑦.

Charge is conserved. Moreover, they cannot move instantaneously. This means that charge
passing by our closed surface 𝑆must equal the negative rate of change of the total charge contained
in volume 𝑉 .15 That is

− d
d𝑡

∭
𝑉

𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∫
𝑆

𝐽1 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽2 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽3 𝑑𝑥 ∧ 𝑑𝑦. (6.45)

We use the Divergence Theorem to turn the integral over the surface on the right side of Equa-
tion 6.45 into an integral over a volume∫

𝑆

𝐽1 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽2 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽3 𝑑𝑥 ∧ 𝑑𝑦 =

∫
𝑉

(𝜕1𝐽1 + 𝜕2𝐽2 + 𝜕3𝐽3) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

On the other hand, the Leibniz integral rule allows us to push in the time derivative in the left side
of Equation 6.45. We obtain the following.

− d
d𝑡

∭
𝑉

𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧 = −
∭

𝑉

𝜕𝑡𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧

=

∭
𝑉

(∇ · 𝑱) 𝑑𝑥 𝑑𝑦 𝑑𝑧

=

∫
𝑉

(𝜕1𝐽1 + 𝜕2𝐽2 + 𝜕3𝐽3) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

=

∫
𝑆

𝐽1 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽2 𝑑𝑦 ∧ 𝑑𝑧 + 𝐽3 𝑑𝑥 ∧ 𝑑𝑦

The above will certainly have to hold for each arbitrary cube 𝑉 , and so we require

∇ · 𝑱 = −𝜕𝑡𝜌

which is called the continuity equation.
Of course, the continuity equation holds in many other situations. Consider the transfer of heat

(thermal energy) from warm to cooler zones. Let 𝑇 is the temperature of each position at each time
and let 𝑱 be the corresponding current density. The speed in which the heat flows will depend on
the properties of the material, and much of the material we have.

To simplify, we may assume that the thermal energy density 𝜌 (corresponding to charge density)
is proportional to the mass density 𝜚 of the material (we will assume this to be a constant), and
the temperature 𝑇. Thus 𝜌 = 𝑐𝜚𝑇, where the dimensionful constant 𝑐 is called the specific heat.
The fact that thermal energy goes from warm to cooler and is proportional to their difference is
expressed in calculus by 𝑱 = −𝑘∇𝑇 (Fourier’s law of thermal conduction),16 where the dimensionful
constant 𝑘 is the thermal conductivity of the material. The continuity equation then gives 𝜕𝑡𝜌 =

𝑐𝜚𝜕𝑡𝑇 = 𝑘∇ · (∇𝑇) = 𝑘∇2𝑇. Define the thermal diffusivity constant 𝛼 := 𝑘/(𝑐𝜚) and we obtain the
heat equation

𝜕𝑡𝑇 = 𝛼∇2𝑇.

15Negative because the more charges exit, the less charge remains.
16Remember that ∇𝑇 = (𝜕𝑥𝑇, 𝜕𝑦𝑇, 𝜕𝑧𝑇)T where each (partial) derivative is a difference taken to the limit.
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6.7 Maxwell’s Equations

The equations
A vector field in ℝ3 assigns to each point in ℝ3 a vector of dimension 3. An example is a vector

field that describes the wind blowing at an instant. Each vector 𝑣 at location (𝑥, 𝑦, 𝑧) tells us the
direction the wind is blowing towards at that instant. Observe that 3-coordinates are needed to
specify where the wind is blowing towards

We discovered in Section 6.5 that a vector field 𝒇 := ( 𝑓1 , 𝑓2 , 𝑓3) in ℝ3 has the associated objects
∇ · 𝒇 , ∇ × 𝒇 , and ∇2 𝒇 defined as follows.

∇ · 𝒇 := 𝜕1 𝑓1 + 𝜕2 𝑓2 + 𝜕3 𝑓3 ∇ × 𝒇 := ©­«
𝜕2 𝑓3 − 𝜕3 𝑓2
𝜕3 𝑓1 − 𝜕1 𝑓3
𝜕1 𝑓2 − 𝜕2 𝑓1

ª®¬ ∇2 𝒇 := ©­«
𝜕1,1 𝑓1 + 𝜕2,2 𝑓1 + 𝜕3,3 𝑓1
𝜕1,1 𝑓2 + 𝜕2,2 𝑓2 + 𝜕3,3 𝑓2
𝜕1,1 𝑓3 + 𝜕2,2 𝑓3 + 𝜕3,3 𝑓3

ª®¬
The scalar ∇ · 𝒇 is called the divergence of vector field 𝒇 , the vector ∇ × 𝒇 is called the curl of vector
field 𝒇 , and the vector ∇2 𝒇 is called the Laplacian of vector field 𝒇 .

In this section, we will be concerned with the electric field 𝑬 := (𝐸1 , 𝐸2 , 𝐸3) and the magnetic
field𝑩 := (𝐵1 , 𝐵2 , 𝐵3). Like the vector field of winds, the electric and magnetic fields can change over
time. So we will manually add a distinguished time axis 𝑡 as the 4-th axis, which is independent
from the other three positional axis.

Here is the situation before 1861. The divergence of an electric field obeys Gauss’s law

∇ · 𝑬 = 𝜌/𝜖0 (6.46)

where 𝜖0 is the constant from Coulomb’s law and 𝜌 describes the electric charge per unit volume
(charge density). The divergence of a magnetic field obeys the “no magnetic monopoles law"

∇ · 𝑩 = 0 (6.47)

and so there is no analogue of a magnetic charge. The curl of an electric field obeys Faraday’s law

∇ × 𝑬 = −𝜕𝑡𝑩. (6.48)

The curl of a magnetic field obeys Ampère’s law

∇ × 𝑩 = 𝜇0𝑱 (6.49)

where the constant 𝜇0 satisfies the equation 𝜇0𝜖0 = 1/𝑐2. The constant 𝑐 is the speed of light (in
vacuum) which takes the value of approximately 3 × 108 m/s. The current density 𝑱 describes the
amount of charge flowing through a unit area per unit time. As the total current flowing out ∇ · 𝑱
is precisely the reduction of charge over time −𝜕𝑡𝜌, the current density 𝑱 and charge density 𝜌
satisfies the continuity equation

∇ · 𝑱 = −𝜕𝑡𝜌.

In the simplest case where the charge density 𝜌 and current density 𝑱 are both zero, we can use
Equation 6.35 to calculate the Laplacian of the electric field to be zero:

∇2𝑬 = ∇ (∇ · 𝑬) − ∇ × (∇ × 𝑬) = ∇0 + ∇ × (𝜕𝑡𝑩) = 0 + 𝜕𝑡 (∇ × 𝑩) = 𝜕𝑡0 = 0
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where we have used the fact that all permutations of 𝜕𝑖 , 𝑗 ,𝑘 𝑓 are equal (see Equation 6.29) to pull 𝜕𝑡
out. If 𝜌 = 0 and 𝑱 = 0, the Laplacian of the magnetic field is also zero:

∇2𝑩 = ∇ (∇ · 𝑩) − ∇ × (∇ × 𝑩) = ∇0 + ∇ × 0 = 0 + 0 = 0.

This is what was known before 1861. Let us play around a little. The simplest thing we can try
is taking the divergence of a curl (recall that it is not possible to take the curl of a divergence). By
Challenge 63, we have ∇ ·

(
∇ × 𝒇

)
= 0. Taking the divergence of both sides of Faraday’s law gives

0 = ∇ · (∇ × 𝑬) = −∇ · (𝜕𝑡𝑩) = −𝜕𝑡 (∇ · 𝑩) = −𝜕𝑡0 = 0

as expected. On the other hand, taking the divergence of both sides of Ampère’s law gives

0 = ∇ · (∇ × 𝑩) = 𝜇0∇ · 𝑱 .

By the continuity equation, the above asserts that 𝜕𝑡𝜌 = 0. The charge density is forbidden from
changing over time!

How we can fix this? We will need to modify Ampère’s law into ∇ × 𝑩 = 𝜇0𝑱 + 𝑿 such that
∇ ·

(
𝜇0𝑱 + 𝑿

)
= 0. By linearity of partial derivatives ∇ ·

(
𝜇0𝑱 + 𝑿

)
= 𝜇0∇ · 𝑱 + ∇ · 𝑿 . To find 𝑿 we

use the continuity equation 𝜇0∇ · 𝑱 + 𝜇0𝜕𝑡𝜌 = 0. Gauss’s law 𝜌 = 𝜖0∇ · 𝑬 gives

𝜇0𝜕𝑡𝜌 = 𝜇0𝜕𝑡 (𝜖0∇ · 𝑬) = ∇ ·
(
𝜇0𝜖0𝜕𝑡𝑬

)
.

Therefore 𝑿 = 𝜇0𝜖0𝜕𝑡𝑬 and we have obtained the Ampère-Maxwell law

∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜖0𝜕𝑡𝑬. (6.50)

As 𝜇0𝜖0 = 1/𝑐2 is about 9× 10−16 s2/m2 this addition (called Maxwell’s correction) is incredibly tiny!
Equations 6.46, 6.47, 6.48, and 6.50 are collectively known as Maxwell’s equations (in vacuum).

In the special case where charge density 𝜌 = 0 and current density 𝑱 = 0, the four equations are
called the source-free Maxwell’s equations.

We now recalculate the Laplacians of 𝑬 and 𝑩 using the source-free Maxwell’s equations.

∇2𝑬 = ∇ (∇ · 𝑬) − ∇ × (∇ × 𝑬) = ∇0 + ∇ × (𝜕𝑡𝑩) = 0 + 𝜕𝑡 (∇ × 𝑩) = 𝜇0𝜖0𝜕𝑡 ,𝑡𝑬

∇2𝑩 = ∇ (∇ · 𝑩) − ∇ × (∇ × 𝑩) = ∇0 − ∇ ×
(
𝜇0𝜖0𝜕𝑡𝑬

)
= −𝜇0𝜖0𝜕𝑡 (∇ × 𝑬) = 𝜇0𝜖0𝜕𝑡 ,𝑡𝑩.

Where have we seen such equations before? Recall that the one-dimensional wave equation for a
wave with speed 𝑣 is given by

𝜕1,1 𝑓 =
1
𝑣2 𝜕𝑡 ,𝑡 𝑓 .

The analogue of 𝜕1,1 for a vector field is the Laplacian ∇2. Thererefore, the three-dimensional wave
equation for wave traveling at speed 𝑣 is given by

∇2 𝒇 =
1
𝑣2 𝜕𝑡 ,𝑡 𝒇 .

Since 𝜇0𝜖0 = 1/𝑐2 we see that in a vacuum, electromagnetic waves propagate at the speed of
light. This led Maxwell to postulate that light is an electromagnetic wave. The discovery of
electromagnetic waves changed everything, and it comes out of the theory because of one tiny
imperceptible correction! It took over two decades from Maxwell’s predictions for the existence
of electromagnetic waves to be demonstrated conclusively. This led to the universal acceptance of
Maxwell’s equations and marked the beginning of telecommunication as we know it.
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Potentials (optional)
Recall that in one dimensions a force 𝐹 is conservative if we can unambiguously define a

potential energy function 𝑉 . We saw in Section 5.1 that 𝐹 = −d𝑉
d𝑥 . The generalization to three

dimensions is that 𝑭 is conservative if there is some potential energy function 𝜙 satisfying 𝑭 = −∇𝜙.
That is,

𝑭 = (𝐹1 , 𝐹2 , 𝐹3) =
(
−𝜕1𝜙,−𝜕2𝜙,−𝜕3𝜙

)
.

By Challenge 63, the curl of a gradient vanishes and so ∇ × 𝑭 = 0 whenever 𝑭 is conservative.
Is the converse true? That is, if ∇ × 𝑭 = 0 can we conclude that 𝑭 is conservative?

Proposition 80 (Curl Test). Let vector field 𝒇 := ( 𝑓1 , 𝑓2 , 𝑓3) be defined on an open rectangle 𝑅 in ℝ3

and suppose 𝑓1 , 𝑓2 , 𝑓3 ∈ 𝒞 1 (all partial derivatives 𝜕𝑖 𝑓𝑗 exist and are continuous). If ∇ × 𝒇 = 0 then
there is some real-valued function 𝜙 such that ∇𝜙 = 𝒇 on the rectangle 𝑅.

Proof. Let (𝑎, 𝑐, 𝑒) be a point in the rectangle 𝑅 and let

𝜙 : (𝑥, 𝑦, 𝑧) ↦→
∫ 𝑥

𝑎

𝑓1(𝑢, 𝑦, 𝑧) 𝑑𝑢 +
∫ 𝑦

𝑐

𝑓2(𝑎, 𝑣, 𝑧) 𝑑𝑣 +
∫ 𝑧

𝑒

𝑓3(𝑎, 𝑐, 𝑤) 𝑑𝑤

where the second and third terms are constant with respect to the first variable so that they vanish
when we take the partial derivative 𝜕1. By the Fundamental Theorem of Calculus (Equation 6.22
adapted to three variables)

𝜕1𝜙(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) + 0 + 0.
The third term in 𝜙 is constant with respect to the second variable and vanishes when we take the
partial derivative 𝜕2. Differentiating under the integral sign (Leibniz integral rule) in the first term,
while applying the Fundamental Theorem of Calculus to the second term gives

𝜕2𝜙(𝑥, 𝑦, 𝑧) = 𝜕2

∫ 𝑥

𝑎

𝑓1(𝑢, 𝑦, 𝑧) 𝑑𝑢 + 𝜕2

∫ 𝑦

𝑐

𝑓2(𝑎, 𝑣, 𝑧) 𝑑𝑣 + 𝜕2

∫ 𝑧

𝑒

𝑓3(𝑎, 𝑐, 𝑤) 𝑑𝑤

=

∫ 𝑥

𝑎

𝜕2 𝑓1(𝑢, 𝑦, 𝑧) 𝑑𝑢 + 𝑓2(𝑎, 𝑦, 𝑧) + 0.

Since ∇ × 𝒇 = 0, in particular, 𝜕1 𝑓2 − 𝜕2 𝑓2. Therefore,∫ 𝑥

𝑎

𝜕2 𝑓1(𝑢, 𝑦, 𝑧) 𝑑𝑢 + 𝑓2(𝑎, 𝑦, 𝑧) =
∫ 𝑥

𝑎

𝜕1 𝑓2(𝑢, 𝑦, 𝑧) 𝑑𝑢 + 𝑓2(𝑎, 𝑦, 𝑧)

and applying the Fundamental Theorem of Calculus (Equation 6.23) gives

𝜕2𝜙(𝑥, 𝑦, 𝑧) =
∫ 𝑥

𝑎

𝜕1 𝑓2(𝑢, 𝑦, 𝑧) 𝑑𝑢 + 𝑓2(𝑎, 𝑦, 𝑧) = 𝑓2(𝑥, 𝑦, 𝑧) − 𝑓2(𝑎, 𝑦, 𝑧) + 𝑓2(𝑎, 𝑦, 𝑧) = 𝑓2(𝑥, 𝑦, 𝑧).

It suffices to check that 𝜕3𝜙(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧); the steps are similar to before. Applying a
differentiation under the integral sign to the first two terms and a Fundamental Theorem of
Calculus to the third term gives

𝜕3𝜙(𝑥, 𝑦, 𝑧) =
∫ 𝑥

𝑎

𝜕3 𝑓1(𝑢, 𝑦, 𝑧) 𝑑𝑢 +
∫ 𝑦

𝑐

𝜕3 𝑓2(𝑎, 𝑣, 𝑧) 𝑑𝑣 + 𝑓3(𝑎, 𝑐, 𝑧).



DRAFT
6.7. MAXWELL’S EQUATIONS 169

Because ∇× 𝒇 = 0 we know that 𝜕3 𝑓1 = 𝜕1 𝑓3 and 𝜕3 𝑓2 = 𝜕2 𝑓3. Making this switch and applying the
Fundamental Theorem of Calculus gives

𝜕3𝜙(𝑥, 𝑦, 𝑧) = 𝑓3(𝑥, 𝑦, 𝑧) − 𝑓3(𝑎, 𝑦, 𝑧) + 𝑓3(𝑎, 𝑦, 𝑧) − 𝑓3(𝑎, 𝑐, 𝑧) + 𝑓3(𝑎, 𝑐, 𝑧) = 𝑓3(𝑥, 𝑦, 𝑧).
Therefore, ∇𝜙 = 𝒇 on rectangle 𝑅.

By Hooke’s law, a simple harmonic oscillator moving along the 𝑥-axis only obeys the force law
𝑭 := (−𝑘𝑥, 0, 0). Since ∇ × 𝑭 = 0, the curl test verifies that the force has a potential energy function
𝜙 satisfying 𝑭 = −∇𝜙. Therefore, Hooke’s law describes a conservative force.
Challenge 69 The Coulomb force felt on a particle with charge 𝑞2 at location (𝑥, 𝑦, 𝑧) due to a
charge 𝑞1 at the origin is given by Coulomb’s law. By varying (𝑥, 𝑦, 𝑧) such that at least one of
𝑥, 𝑦, 𝑧 is nonzero, we can think of the electrostatic force as the following vector field

𝑭 : (𝑥, 𝑦, 𝑧) ↦→
(
𝑞1𝑞2

4𝜋𝜖0

𝑥

𝑟3 ,
𝑞1𝑞2

4𝜋𝜖0

𝑦

𝑟3 ,
𝑞1𝑞2

4𝜋𝜖0

𝑧

𝑟3

)
where 𝑟 :=

√
𝑥2 + 𝑦2 + 𝑧2. Check that the Coulomb force is conservative.

In Challenge 63 we also saw that the divergence of a curl always vanishes: ∇ ·
(
∇ × 𝒇

)
= 0.

Is there an analogous result to Proposition 80 that if ∇ · 𝑭 = 0 there is a vector field 𝑨 such that
∇ × 𝑨 = 𝑭?

Proposition 81. If vector field 𝒇 := ( 𝑓1 , 𝑓2 , 𝑓3)defined on an open rectangle 𝑅 inℝ3 satisfies∇· 𝒇 = 0,
then there is a vector field 𝑨 := (𝐴1 , 𝐴2 , 𝐴3) such that ∇ × 𝑨 = 𝒇 .

Proof. As before, we construct 𝑨 such that ∇ × 𝑨 = 𝒇 . Let (𝑎, 𝑐, 𝑒) ∈ 𝑅 and define 𝐴𝑖 as follows.

𝐴1 : (𝑥, 𝑦, 𝑧) ↦→
∫ 𝑦

𝑐

− 𝑓3(𝑥, 𝑣, 𝑒) 𝑑𝑣 +
∫ 𝑧

𝑒

𝑓2(𝑥, 𝑦, 𝑤) 𝑑𝑤

𝐴2 : (𝑥, 𝑦, 𝑧) ↦→
∫ 𝑧

𝑒

− 𝑓1(𝑥, 𝑦, 𝑤) 𝑑𝑤

𝐴3 : (𝑥, 𝑦, 𝑧) ↦→ (0, 0, 0)
By the Fundamental Theorem of Calculus, 𝜕2𝐴3 − 𝜕3𝐴2 = 0 + 𝑓1(𝑥, 𝑦, 𝑧) = 𝑓1(𝑥, 𝑦, 𝑧). The first
integral in 𝐴1 is a constant with respect to the third variable. Applying the Fundamental Theorem
of Calculus to the second term of 𝐴1 gives

𝜕3𝐴1 − 𝜕1𝐴3 = 0 + 𝑓2(𝑥, 𝑦, 𝑧) − 0 = 𝑓2(𝑥, 𝑦, 𝑧).
Since ∇ · 𝒇 = 0 we know that 𝜕3 𝑓3 = −𝜕1 𝑓1 + 𝜕2 𝑓2. Therefore,

𝜕1𝐴2 − 𝜕2𝐴1 =

∫ 𝑧

𝑒

−𝜕1 𝑓1(𝑥, 𝑦, 𝑤) 𝑑𝑤 −
(
− 𝑓3(𝑥, 𝑦, 𝑒) +

∫ 𝑧

𝑒

𝜕2 𝑓2(𝑥, 𝑦, 𝑤) 𝑑𝑤
)

=

∫ 𝑧

𝑒

[
−𝜕1 𝑓1(𝑥, 𝑦, 𝑤) − 𝜕2 𝑓2(𝑥, 𝑦, 𝑤)

]
𝑑𝑤 + 𝑓3(𝑥, 𝑦, 𝑒) − 𝑓3(𝑥, 𝑐, 𝑒)

=

∫ 𝑧

𝑒

𝜕3 𝑓3(𝑥, 𝑦, 𝑤) 𝑑𝑤 + 𝑓3(𝑥, 𝑦, 𝑒) = 𝑓3(𝑥, 𝑦, 𝑧) − 𝑓3(𝑥, 𝑦, 𝑒) + 𝑓3(𝑥, 𝑦, 𝑒)

= 𝑓3(𝑥, 𝑦, 𝑧)
and we have verified that ∇ · 𝑨 = 𝒇 on the rectangle 𝑅.



DRAFT
170 CHAPTER 6. MULTIVARIABLES

From the “no magnetic monopole law" we know that ∇ · 𝑩 = 0. By Proposition 81 there is a
vector field 𝑨 called a (magnetic) vector potential defined by ∇×𝑨 = 𝑩. Then Faraday’s law gives

0 = ∇ × 𝑬 + 𝜕𝑡𝑩 = ∇ × 𝑬 + 𝜕𝑡 (∇ × 𝑩) = ∇ × (𝑬 + 𝜕𝑡𝑬)

where we have pushed in the time derivative using (the generalized) Clairaut’s Theorem. Propo-
sition 80 tells us that there is a scalar-valued function 𝜙 such that −∇𝜙 = 𝑬 + 𝜕𝑡𝑨.17 The function
𝜙 is called a scalar potential.

The constructions used to obtain Proposition 80 and Proposition 81 are easily seen to be not
unique, and so we know that the same electric and magnetic field can arise from distinct scalar and
vector potentials. Indeed, as the curl of a gradient is zero (Challenge 63), for a vector potential 𝑨,
we have

∇ ×
(
𝑨 + ∇𝜓

)
= ∇ × 𝑨 +�����

∇ ×
(
∇𝜓

)
= ∇ × 𝑨 = 𝑩.

Defining 𝑨′ := 𝑨 + ∇𝜓 and applying it to the definition of the scalar potential gives

𝑬 = −∇𝜙 − 𝜕𝑡𝑨 = −∇𝜙 − 𝜕𝑡
(
𝑨′ − ∇𝜓

)
= −∇𝜙 − 𝜕𝑡𝑨′ + 𝜕𝑡∇𝜓 = −∇

(
𝜙 − 𝜕𝑡𝜓

)
− 𝜕𝑡𝑨′.

Hence making the simultaneous substitutions

𝑨 ↦→ 𝑨 + ∇𝜓 𝜙 ↦→ 𝜙 − 𝜕𝑡𝜓

leaves the electric field 𝑬 and the electric field 𝑩 invariant. The pair of transformations above are
called a gauge transformation. That a gauge transformation leaves Maxwell’s equations invariant
is called gauge invariance.

Potentials and forms (optional)
Challenge 70 We can rephrase Proposition 80 and Proposition 81 in the language of Section 6.5.
A 𝑘-form 𝜂 is closed if 𝑑𝜂 = 0. For 𝑘 ≥ 1, a 𝑘-form 𝜂 is exact if there is a 𝑘 − 1 form 𝜔 such that
𝑑𝜔 = 𝜂. Since a 𝑘-form 𝛼 in ℝ3 satisfies 𝑑(𝑑𝛼) = 0, each exact form is closed. Prove Poincaré’s
lemma in ℝ3: for 𝑘 ≥ 1, each closed 𝑘-form on an open rectangle 𝑅 in ℝ3 is exact on 𝑅.

Let us pretend that we knew about forms inℝ3, but we did not know about Maxwell’s equations.
Being bored with working on ℝ3, we consider working on ℝ4. We will think of the extra axis as
representing time 𝑡 because it is the only thing that makes sense to add as an extra dimension. We
will add time as the zeroth dimension so that 𝑑𝑥0 := 𝑑𝑡, while 𝑑𝑥1 , 𝑑𝑥2 , 𝑑𝑥3 are as before.

The most basic object on ℝ4, if a vector field defined on ℝ4, which is equivalent to a 1-form in
ℝ4. So consider a 1-form 𝐴 := 𝜙 𝑑𝑡 + 𝐴1 𝑑𝑥1 + 𝐴2 𝑑𝑥2 + 𝐴3 𝑑𝑥3, where the zeroth element has a
different symbol because time is different from space. The whole reason we are considering ℝ4 is
so that we can do calculus on it. So we take an exterior derivative of 𝐴 using Equation 6.31. We
put 𝐴0 := 𝜙 and apply the definition of the exterior derivative to get the following.

𝑑𝐴 =

∑
0≤𝑖≤4

𝑑𝐴𝑖 ∧ 𝑑𝑥𝑖 =
∑

0≤𝑖≤4

4∑
𝑗=0

𝜕𝑗𝐴𝑖 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖

= (𝜕𝑡𝐴1 + 𝜕1𝜙) 𝑑𝑡 ∧ 𝑑𝑥1 + (𝜕𝑡𝐴2 + 𝜕2𝜙) 𝑑𝑡 ∧ 𝑑𝑥2 + (𝜕𝑡𝐴3 + 𝜕3𝜙) 𝑑𝑡 ∧ 𝑑𝑥3

+ (𝜕2𝐴3 − 𝜕3𝐴2) 𝑑𝑥2 ∧ 𝑑𝑥3 + (𝜕3𝐴1 − 𝜕1𝐴3) 𝑑𝑥3 ∧ 𝑑𝑥1 + (𝜕1𝐴2 − 𝜕2𝐴1) 𝑑𝑥1 ∧ 𝑑𝑥2

17The minus sign in front of ∇𝜙 is simply due to convention.
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Notice that we have separated out the time-space forms 𝑑𝑡 ∧ 𝑑𝑥𝑖 and space-space forms 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘 .
For convenience, we will denote the coefficients of the time-space forms 𝑑𝑡 ∧ 𝑑𝑥𝑖 by −𝐸𝑖 . We

will also denote the coefficients of the space-space forms by 𝐵𝑖 so that 𝑑𝐴 can be written as follows.

𝑑𝐴 = −𝐸1 𝑑𝑡 ∧ 𝑑𝑥1 − 𝐸2 𝑑𝑡 ∧ 𝑑𝑥2 − 𝐸3 𝑑𝑡 ∧ 𝑑𝑥3 + 𝐵1 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝐵2 𝑑𝑥3 ∧ 𝑑𝑥1 + 𝐵3 𝑑𝑥1 ∧ 𝑑𝑥2

This allows us to define a 3-component vector field 𝑬 := (𝐸1 , 𝐸2 , 𝐸3) and a 3-component vector field
𝑩 := (𝐵1 , 𝐵2 , 𝐵3).

Because we know about forms in ℝ3, we know about gradients, curls, and divergences. So we
know that 𝑬 = −∇𝜙 − 𝜕𝑡𝑨 if we define the 3-component vector field 𝑨 := (𝐴1 , 𝐴2 , 𝐴3). Similarly,
we also know that ∇ × 𝑨 = 𝑩. We know from Challenge 63 that the curl of a gradient is zero and
the divergence of a curl is zero. Therefore,

∇ × 𝑬 = ∇ ×
(
−∇𝜙 − 𝜕𝑡𝑨

)
= ∇ ×

(
−∇𝜙

)
− 𝜕𝑡∇ × 𝑨 = −𝜕𝑡𝑩 ∇ · 𝑩 = ∇ · (∇ × 𝑨) = 0

So far we have been able to obtain an equation for the curl of an object called 𝑬 and the
divergence of an object called 𝑩. It makes sense to try and cook up an equation for the divergence
of 𝑬 and an equation for the curl of 𝑩. The simplest option would be to assert that ∇ · 𝑬 = 0, but let
us try and come up with a simple nontrivial equation. We will say that there is a density of “stuff"
called 𝜌 with a dimensionful constant 𝜖0 for flexibility with defining what this “stuff" is. We have
∇ · 𝑬 = 𝜌/𝜖0. Notice that by introducing a “stuff" density 𝑬 is now dimensionful, and so are 𝑨 and
𝑩 due to the equations 𝑬 = −∇𝜙 − 𝜕𝑡𝑨 and 𝑩 = ∇ × 𝑨.

If the “stuff" is constant at all times, our equations would be too boring. So let us assume that
the density of the “stuff" is allowed to change. We will describe the change over time of our “stuff"
by the 3-component vector field 𝑱.

All that is left is to come up with an equation for the curl of 𝑩. We could define it as∇×𝑩 = −𝜕𝑡𝑬
to keep things symmetric with the equation ∇×𝑬 = −𝜕𝑡𝑩. However, we will not do so, because we
want 𝜌 and 𝑱 to obey the continuity equation. To ensure that the continuity equation 𝜕𝑡𝜌 + 𝑱 = 0
holds, as we will verify soon, it is sufficient to define 𝑱 as the difference of the curl of 𝑩 and 𝜕𝑡𝑬,
along with some constants to match the units. We will thus define 𝜇0𝑱 := ∇ × 𝑩 − 𝜇0𝜖0𝜕𝑡𝑬.

Here are our four equations.

∇ · 𝑬 = 𝜌/𝜖0 ∇ × 𝑬 = −𝜕𝑡𝑩 ∇ · 𝑩 = 0 ∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜖0𝜕𝑡𝑬

These have the exact same appearances as Maxwell’s equations! Repeating what we did earlier
word for word shows that the equations above also results in wave equations for waves traveling
at the speed 𝑐 := 1/√𝜇0𝜖0 in vacuum. In particular, all the results in the subsequent section can be
obtained even if we knew nothing about Maxwell’s equations and light.

6.8 Paradigm Shattering

Born rule
Maxwell’s correction to Ampère’s law gives an unexpected benefit that the continuity equation

is built right into Maxwell’s equations. As only two of the four equations contain information
on sources 𝜌 and 𝑱, we can ignore half of Maxwell’s equations. Since the divergence of a curl is



DRAFT
172 CHAPTER 6. MULTIVARIABLES

zero, taking the divergence of both sides of the Ampère-Maxwell law and using the linearity of the
derivative and equality of mixed partials gives 0 = 𝜇0∇ · 𝒋 + 𝜇0𝜖0𝜕𝑡 (∇ · 𝑬). Gauss’s law provides
the substitution ∇ · 𝑬 = 𝜌/𝜖0 . Dividing through by 𝜇0 gives the continuity equation ∇ · 𝑱 + 𝜕𝑡𝜌 = 0.

We can guess that the temperature (energy) distribution of an object and the heat flow (en-
ergy current) of the heat equation should also obey the continuity equation. Since Schrödinger’s
equation is a heat equation (Section 5.5 and Section 6.6), it should also hold a continuity equation.

Left multiplyingΨ∗ on Schrödinger’s equation and left multiplyingΨ on the complex conjugate
of Schrödinger’s equation gives the following (notice 𝑉 is real because 𝐻 must be Hermitian).

Ψ∗
(
− ℏ2

2𝑚∇
2 +𝑉

)
Ψ = Ψ∗𝑖ℏ𝜕𝑡Ψ Ψ

(
− ℏ2

2𝑚∇
2 +𝑉

)
Ψ∗ = −𝑖ℏ𝜕𝑡Ψ∗

Subtracting the latter from the former, we have

− ℏ2

2𝑚
[
Ψ∗∇2Ψ −Ψ∇2Ψ∗

]
= 𝑖ℏ [Ψ∗𝜕𝑡Ψ +Ψ𝜕𝑡Ψ

∗] .

The right side is an application of the product rule on 𝑖ℏ𝜕𝑡 (Ψ∗Ψ). On the other hand, we can pull
out a divergence on the left side to get − ℏ2

2𝑚
[
Ψ∗∇2Ψ −Ψ∇2Ψ∗

]
= − ℏ2

2𝑚∇ · [Ψ∗∇Ψ −Ψ∇Ψ∗] as you
can verify. Therefore, the Schrödinger equation gives us the continuity equation

𝜕𝑡𝜌 = −∇ · 𝑱

with 𝜌 := |Ψ|2 and 𝑱 := ℏ
2𝑖𝑚 (Ψ∗∇Ψ −Ψ∇Ψ∗). Thus |Ψ|2 is an analogue of a "charge density". How

can a point particle have a density? Since |Ψ|2 must give the propensity of the particle to be each
location, it follows that once we scale the wavefunction Ψ such that

∭
ℝ3 |Ψ|2 𝑑𝑥 𝑑𝑦 𝑑𝑥 = 1, then∫ 𝑏

𝑎

∫ 𝑑

𝑐

∫ 𝑓

𝑒

��Ψ(𝑥, 𝑦, 𝑧, 𝑡)��2 𝑑𝑥 𝑑𝑦 𝑑𝑧 is the probability that the particle is to be found in the rectangle
[𝑎, 𝑏] × [𝑐, 𝑑] × [𝑒 , 𝑓 ] at time 𝑡. This postulate is called the Born Rule. We call 𝜌 a probability
density and 𝑱 a probability current.

A crazy proposition, but this is what calculus is telling us! As the calculus of probability requires
a different mindset, we will take ourselves back to 1904 and forget about Schrödinger’s equation.
Surely if we stick to good old Newtonian mechanics and Maxwell’s equations, all will be alright
and sensible. Unlike quantum theory which needs complex numbers, Newtonian mechanics and
Maxwellian theory (electromagnetism) only require real numbers. We now discuss the space in
which Newtonian mechanics and electromagnetism plays out.

Euclidean space
Our discussion of forms began with the wedge product which gave us a way to combine forms.18

What forms can we get with wedge products? Taking the wedge product of a form with a 0-form is
not so interesting, and taking the wedge product of a 3-form with a 𝑘-form with 𝑘 ≥ 1 gives zero,
so it suffices to combine 1-forms and 2-forms. We already saw that taking the wedge product of
two 1-forms and then taking the Hodge star gives the cross product × (Challenge 65). Taking the
wedge product of two 2-forms gives zero, so all that is left is to consider the wedge product of a
1-form with a 2-form, and vice versa.

18The references to forms can be ignored if you skipped Section 6.5.
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We know that such a wedge product will return a 3-form, so we might as well take a Hodge
star to get a 0-form. Let 𝜔𝑢 be the 1-form corresponding to the vector (𝑢1 , 𝑢2 , 𝑢3) and let 𝜂𝑣 :=
𝑣1 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝑣2 𝑑𝑥3 ∧ 𝑑𝑥1 + 𝑣3 𝑑𝑥1 ∧ 𝑑𝑥2. As you should verify,

★
(
𝜔𝑢 ∧ 𝜂𝑣

)
=

3∑
𝑖=1

𝑢𝑖𝑣𝑖 .

If we take 𝑣𝑖 := 𝑢𝑖 then we have the number
∑3
𝑖=1 𝑢

2
𝑖
. This number measures how far away the

point (𝑢1 , 𝑢2 , 𝑢3) ∈ ℝ3 is located from the origin. Indeed, if 𝑢3 = 0, we recover the distance from
the origin given by the Pythagorean theorem. The binary function that takes two vectors 𝑢, 𝑣 ∈ ℝ3

and returns the scalar
∑3
𝑖=1 𝑢𝑖𝑣𝑖 is called the dot product of vectors 𝑢 and 𝑣. More generally, if 𝑢, 𝑣

are vectors in ℝ𝑛 , then 𝑢 · 𝑣 := 𝑢T𝑣. We denote the dot product of two vectors 𝑢 and 𝑣 by 𝑢 · 𝑣 and
we call ℝ𝑛 equipped with the dot product operation the Euclidean space 𝔼𝑛 . Observe that the dot
product is a commutative operation.
Challenge 71 All vectors and forms are assumed to be in 𝔼3.

(a) Let 𝑎 := (𝑎1 , 𝑎2 , 𝑎3)T, 𝑏 := (𝑏1 , 𝑏2 , 𝑏3)T, and 𝑐 := (𝑐1 , 𝑐2 , 𝑐3)T. Verify that

𝑎 · (𝑏 × 𝑐) = det ©­«
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

ª®¬ .
Conclude that 𝑎 · (𝑏× 𝑐) = 𝑏 · (𝑐× 𝑎) = 𝑐 · (𝑎× 𝑏) and deduce that 𝑎 · (𝑏× 𝑐) = (𝑎× 𝑏) · 𝑐. Vector 𝑢
is perpendicular to vector 𝑣 if 𝑢 · 𝑣 = 0. For example, distinct pairs of standard basis vectors
𝑒1 , 𝑒2 , 𝑒3 are perpendicular to each other. Check that 𝑎 × 𝑏 is perpendicular to both 𝑎 and 𝑏.

(b) Pretend ∇ := (𝜕1 , 𝜕2 , 𝜕3)T is a vector in 𝔼3 and let 𝑓 be a vector field in 𝔼3. Check that the cross
product of ∇ and 𝑓 is the curl of 𝑓 . Check that the dot product of ∇ and 𝑓 is the divergence
of 𝑓 . This explains the notation of the curl and divergence operators.

(c) Let 𝛼, 𝛽 be 1-forms and let 𝜂 be a 2-form. Show that 𝛼 ∧ 𝜂 = 𝜂 ∧ 𝛼 and 𝛼 ∧ 𝛽 = −𝛽 ∧ 𝛼.
Conclude that if 𝜔1 is a 𝑘-form and 𝜔2 is an 𝑟-form, then 𝜔1 ∧ 𝜔2 = (−1)𝑘𝑟𝜔2 ∧ 𝜔1.

Obvious assumptions

Here are the most basic assumptions we use to apply calculus to study of the world around us.
Space and time To do calculus, we need to have a space for functions and numbers to live in. The
arena for our laws of nature, which in 1904 are Newton’s second law and Maxwell’s equations, is
the three dimensional Euclidean space and a separate one dimensional time axis. In particular, an
absolute time evidently exists, regardless of how good we are at keeping times, progressing at an
equal rate for everyone. Indeed, if everyone had accurate clocks that were uniformly synchronized,
all will agree with the time at which each event occurs.
Galileo’s principle of relativity To assign positions of objects in the Euclidean space 𝔼3 and the
corresponding times in the time axis, we need to make a choice of origin. For the Euclidean space
𝔼3 we need to make a further choice of axis and orientation of the axis. Such a choice is called a
coordinate system or a reference frame. We assume that there are inertial reference frames such
that: (i) the laws of nature are the same for all time in all inertial reference frames, and (ii) each
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reference frame in uniform one-dimensional motion along a line with respect to an inertial reference
frame is also inertial.19
Newton’s principle of determinacy This is the assumption that knowing the initial state of a
physical system and applying calculus allows us to uniquely determine the dynamics of the system.
We shall say no more as it was already invalidated by the probabilistic nature of Schrödinger’s
equation from the Born rule.

Transverse waves
As a concrete example of the application of calculus to electromagnetism, we find a solution to

the source free Maxwells equations in vacuum shown below.

∇ · 𝑬 = 0 ∇ × 𝑬 = −𝜕𝑡𝑩 ∇ · 𝑩 = 0 ∇ × 𝑩 = 1/𝑐2𝜕𝑡𝑬

To simplify things, we will assume 𝑬 has a 𝑦-component only, that is, 𝑬 := (0, 𝐸𝑦 , 0). Gauss’s law
�
��𝜕𝑥𝐸𝑥 + 𝜕𝑦𝐸𝑦 +���𝜕𝑧𝐸𝑧 = 0 is satisfied if 𝐸𝑦 is not a function of 𝑦. To simplify further, we will assume

that 𝐸𝑦 is a function of 𝑥 and 𝑡 only. In particular, as we know that the source free Maxwell’s
equations gives a wave equation for 𝑬 and for 𝑩 for a wave traveling at the speed of light (in a
vacuum) 𝑐, we will take a page from the one-dimensional wave equation and put 𝐸𝑦 := 𝑓 (𝑥 − 𝑐𝑡)
for some twice differentiable real-valued function 𝑓 .

Next, we turn to Faraday’s law ∇ × 𝑬 = −𝜕𝑡𝑩. We know from Challenge 71 that the field 𝑬 is
perpendicular to 𝑩. The choice 𝑩 := (0, 0, 𝐵𝑧) satisfies this because the standard basis vectors 𝑒2
and 𝑒3 are perpendicular. Furthermore, we require that ∇ · 𝑩 = 0. Just as we did with the electric
field 𝑬, we assume that 𝐵𝑦 is a function of 𝑥 and 𝑡 only with the form 𝐵𝑧 := 𝜉 𝑓 (𝑥 − 𝑐𝑡) for some
nonzero constant 𝜉. With these choices, Faraday’s law ∇ × 𝑬 = −𝜕𝑡𝑩 becomes

©­«
0
0

𝜕𝑥 𝑓 (𝑥 − 𝑐𝑡)
ª®¬ =

©­«
0
0

−𝜉𝜕𝑡 𝑓 (𝑥 − 𝑐𝑡)
ª®¬ .

The above is familiar from our derivation of the one dimensional wave equation in Section 5.4.
Indeed, the chain rule gives

𝜕𝑥 𝑓 (𝑥 − 𝑐𝑡) = 𝑓 ′(𝑥 − 𝑐𝑡) −𝜕𝑡 𝑓 (𝑥 − 𝑐𝑡) = 𝑐 𝑓 ′(𝑥 − 𝑐𝑡)

and so for Faraday’s law to hold, we require that 𝜉 := 1/𝑐.
The Ampère-Maxwell law is all that is left to check. Indeed,

∇ × 𝑩 =
©­«

0
− 1
𝑐 𝜕𝑥 𝑓 (𝑥 − 𝑐𝑡)

0

ª®¬ =
©­«

0
− 1
𝑐 𝑓
′(𝑥 − 𝑐𝑡)

0

ª®¬ =
©­«

0
1
𝑐2 𝜕𝑡 𝑓 (𝑥 − 𝑐𝑡)

0

ª®¬ =
1
𝑐2 𝜕𝑡𝑬

and the Ampère-Maxwell law holds. As all four equations have been satisfied, we see that

𝑬 = (0, 𝑓 (𝑥 − 𝑐𝑡), 0) 𝑩 = (0, 0, 𝑓 (𝑥 − 𝑐𝑡)/𝑐)
19Thus if we move along a line with respect to an inertial reference frame, but with non-zero acceleration (in a car/-

train/plane/etc), our laws of nature will appear different from that of an inertial reference frame. Indeed, an apple on the
floor of a plane during take off will slide towards the back of the plane instead of staying put.
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is a solution to the source free Maxwell’s equation. In fact, repeating the above steps but starting
with the guess that 𝑬 = (0, 𝑔(𝑥 + 𝑐𝑡), 0) for some twice differentiable function 𝑔 gives another
solution to the source free Maxwell’s equation

𝑬 = (0, 𝑔(𝑥 + 𝑐𝑡), 0) 𝑩 = (0, 0,−𝑔(𝑧 + 𝑐𝑡)/𝑐).

As the source free Maxwell’s equations are linear partial differential equations, the sum of solutions

𝑬 = (0, 𝑓 (𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡), 0) 𝑩 = (0, 0, 𝑓 (𝑥 − 𝑐𝑡)/𝑐 − 𝑔(𝑥 + 𝑐𝑡)/𝑐).

is also a solution.

Principle of relativity

𝑦
𝑥

𝑧

𝑣

𝑦′𝑥′

𝑧′

Let us apply Galileo’s principle of relativity to our solution to the source free Maxwell’s equa-
tions. We begin by considering an inertial observer 𝒪 whose choice of coordinate system 𝒮 is
(𝑥, 𝑦, 𝑧, 𝑡), as shown in the diagram above (colored blue). Suppose we have another observer 𝒪′
whose choice of coordinate system 𝒮′ is (𝑥′, 𝑦′, 𝑧′, 𝑡). To keep things simple yet nontrivial, we
will assume that this coordinate system’s origin is moving at a constant speed 𝑣 along the shared
𝑥/𝑥′-axis as shown in the diagram above (colored red), with both origins aligning exactly (that is,
𝑥 = 𝑥′, 𝑦 = 𝑦′, 𝑧 = 𝑧′) at time 𝑡 = 𝑡′ = 0. By Galileo’s principle of relativity, the coordinate system
𝒮′ of 𝒪′ is also an inertial reference frame.

Each event witnessed by observers 𝒪 and 𝒪′ takes place at different coordinates because these
observers do not share the same coordinate systems. In particular, the coordinates of each event in
𝒮 and 𝒮′ are related by the equations below, called the Galilean transformations.

𝑥′ = 𝑥 − 𝑣𝑡 𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝑡

By construction, the second and third coordinates of each event will always be agreed upon by
both observers. Time will always be agreed upon because we are assuming the observer’s clocks
are functional and synchronized. The only disagreement will be in the event’s first coordinate
because observer 𝒪′ is moving ahead of observer 𝒪 along that axis.

The source free Maxwell’s equation had a solution 𝐸𝑦(𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡). This is true
for the observer 𝒪. For observer 𝒪′, applying the Galilean transformations turns our solution into

𝐸𝑦(𝑥, 𝑡) = 𝑓 (𝑥′ − [𝑐 − 𝑣]𝑡′) + 𝑔(𝑥′ + [𝑐 + 𝑣]𝑡′).

Observe that a wave traveling at speed 𝑐 has now turned into a wave that is not traveling at speed
𝑐, unless 𝑣 is zero!

This is a huge problem because the same laws of nature must be equally valid for all inertial
observers, and the laws of nature (Maxwell’s equations) dictate that electromagnetic waves in a
vacuum propagates at the speed of light.
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By our calculations, there is only one reference frame in which electromagnetic waves in vacuum
propagate at the speed 𝑐. It follows that there is exactly one distinguished absolute reference frame
in which Maxwell’s equations are valid. But this conclusions is highly unsatisfactory! We have
been given an amazing toy called Maxwell’s equations, only to have it immediately yanked away
from our hands because we are (very likely) not in this absolute reference frame, and are forbidden
from appreciating it for what it is, unless we nail down what this absolute reference frame is.

There are two options. The first option is to accept that Galileo’s principle of relativity only
holds for Newtonian mechanics, but not for electromagnetism. The second option is to declare
that the principle of relativity must hold for all laws of nature, including electromagnetism. But as we saw,
this causes a contradiction, unless we accept the existence of a preferred absolute reference frame,
which defeats the purpose of insisting on a principle of relativity in the first place! To wiggle out
of this problem, we will add in a second clause to the second option that the speed of light in vacuum
must be the same for all inertial observers (regardless of how the source of the light is moving). As the
Galilean transformation are not compatible with this second clause, we will need to find another
set of coordinate transformations that is.

The second option was first laid out by Albert Einstein and is known as the postulates of special
relativity. The first clause of the postulates is called the principle of relativity. The second clause
of the postulates is called the invariance of 𝑐.

Lorentz transformations
We will accept the postulates of special relativity because the postulates allows us to keep the

principle of relativity while removing the need for us to (1) accept that there is an absolute reference
frame, (2) figure out what this absolute reference frame is, and (3) translate all our calculations
into this absolute reference frame. However, this means that we no longer accept the Galilean
transformations as describing coordinate transformations from one inertial reference frame to
another. We must find another set of transformations.

Our starting point will have to be the invariance of 𝑐. As before, we consider observers 𝒪 and
𝒪′whose reference frames have origins that coincide at time 𝑡 = 𝑡′ = 0, but thereafter move relative
to each other along the shared 𝑥/𝑥′-axis at a constant speed 𝑣. Now suppose a burst of light is
emitted at time 𝑡 = 𝑡′ = 0.

To observer 𝒪, the light signal satisfies the equation 𝑐𝑡 =
√
𝑥2 + 𝑦2 + 𝑧2, where the right side

is the distance the light traveled and the left side is the time the light traveled multiplied by the
(constant) speed of light in vacuum 𝑐.

As the speed of light in vacuum is universal, observer𝒪′will also say that 𝑐𝑡′ =
√
𝑥′2 + 𝑦′2 + 𝑧′2.

Therefore,
(𝑐𝑡)2 − (𝑥2 + 𝑦2 + 𝑧2) = 0 = (𝑐𝑡′)2 − (𝑥′2 + 𝑦′2 + 𝑧′2).

Since 𝑦′ = 𝑦 and 𝑧′ = 𝑧 at all times, we have the simplified equation

(𝑐𝑡′)2 − 𝑥′2 = (𝑐𝑡)2 − 𝑥2. (6.51)

For simplicity, let us assume that the coordinate transformation can be done by a real matrix(
𝑥′

𝑐𝑡′

)
:=

(
𝛼 𝛽
𝛾 𝛿

) (
𝑥
𝑐𝑡

)
. (6.52)
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−3 −2 −1 1 2 3

−1

1

𝜙

tanh 𝜙

This means that 𝑥′ = 𝛼𝑥+𝛽(𝑐𝑡) and 𝑐𝑡′ = 𝛾𝑥+𝛿(𝑐𝑡). Plugging these substitutions into Equation 6.51
gives [

(𝛾𝑥)2 + (𝛿𝑐𝑡)2 + 2𝛾𝛿𝑐𝑥𝑡
]
−

[
(𝛼𝑥)2 + (𝛽𝑐𝑡)2 + 2𝛼𝛽𝑐𝑥𝑡

]
= (𝑐𝑡)2 − 𝑥2.

After some rearrangement, we have[
𝛿2 − 𝛽2] (𝑐𝑡)2 − [

𝛼2 − 𝛾2] 𝑥2 +
[
2𝛾𝛿 − 2𝛼𝛽

]
(𝑐𝑥𝑡) = (𝑐𝑡)2 − 𝑥2. (6.53)

Equation 6.53 is a little too complicated. To simplify, let us study the point 𝑥 = 𝑦 = 𝑧 = 0 in the
reference frame of observer 𝒪 and see how that point moves in the reference frame of observer 𝒪′.
Equation 6.53 then becomes [

𝛿2 − 𝛽2] (𝑐𝑡)2 = 1 · (𝑐𝑡)2. (6.54)

We need to find 𝛿 and 𝛽 such that 𝛿2 − 𝛽2 = 1. This is almost like the trigonometric identity
sin2 𝜙+cos2 𝜙 = 1. In fact, it is satisfied by the hyperbolic identity cosh2 𝜙−sinh2 𝜙 = 1 (Challenge 14
of Chapter 3). We therefore guess that 𝛿 := cosh 𝜙 for some 𝜙 and so there is a transformation rule
for time given by 𝑐𝑡′ = 𝑐𝑡 cosh 𝜙.20 We see that time may not be the same for everyone! This raises
serious questions about the concept of absolute time.

Continuing on, we know that 𝛽 = ± sinh 𝜙 for some 𝜙, with a sign to be determined. Matrix
Equation 6.52 with 𝑥 = 0 tells us that

𝑥′ = ±𝑐𝑡 sinh 𝜙.

This is a shocking result, as space and time are no longer independent, but intertwined! As our
assumption is that the second reference frame moves away from the stationary reference frame at
a rate of 𝑣 to the left, the sign of 𝛽 will be negative. Therefore 𝑥′ = −𝑐𝑡 sinh 𝜙.

The speed 𝑣 at which the point (𝑥′, 𝑦′, 𝑧′) in the second reference frame moves away from
the point (0, 0, 0) in the reference frame of observer 𝒪 is given by dividing |𝑥′| := 𝑐𝑡 sinh 𝜙 by
𝑡′ := 𝑡 cosh 𝜙. Hence

𝑣 =
𝑐𝑡 sinh 𝜙

𝑡 cosh 𝜙
= 𝑐 tanh 𝜙

and we define rapidity 𝜙 such that tanh 𝜙 := 𝑣/𝑐.
Because the tanh function takes values strictly in the interval (−1, 1) the value 𝑣 = 𝑐 tanh 𝜙 must

lie strictly within the interval (−𝑐, 𝑐). This means that inertial reference frames cannot move away
20We rule out 𝛿 := − cosh 𝜙 as it would lead to the transformation rule 𝑐𝑡′ = −𝑐𝑡 cosh 𝜙 where time runs in opposite

directions. Notice cosh 𝜙 := (𝑒𝜙 + 𝑒−𝜙)/2 is a positive function.
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from each other with arbitrary speeds. The speed of the relative motion of inertial reference frames
must be capped by the speed of light 𝑐.

From Challenge 14 we obtained the formulas

sinh 𝜙 = tanh 𝜙/
√

1 − tanh2 𝜙 cosh 𝜙 = 1/
√

1 − tanh2 𝜙

which we can combine with the definition of rapidity tanh 𝜙 = 𝑣/𝑐 to get the following.

𝑥′ = −𝑐𝑡 sinh 𝜙 = −
𝑐𝑡 tanh 𝜙√
1 − tanh2 𝜙

= − 𝑣𝑡√
1 − 𝑣2/𝑐2

𝑡′ = 𝑡 cosh 𝜙 =
𝑡√

1 − tanh2 𝜙
=

𝑡√
1 − 𝑣2/𝑐2

Taking 𝑐 →∞ so that 𝑣2/𝑐2 → 0 allows us to recover the Galilean transformations when 𝑥 = 0.

𝑥′ = −𝑣𝑡 𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝑡

This suggest that the Galilean transformations are a special case of this more general transformation
rule, where the speeds involved are far smaller than 𝑐. Observe that we also recover the correct
sign of the parameter 𝛽.

Repeating our previous calculations starting from Equation 6.53 with 𝑡 = 0 and 𝑥 ≠ 0 tells us
that 𝛼 = cosh 𝜙 and 𝛾 = − sinh 𝜙. The full matrix transformation is then(

𝑥′

𝑐𝑡′

)
:=

(
cosh 𝜙 − sinh 𝜙
− sinh 𝜙 cosh 𝜙

) (
𝑥
𝑐𝑡

)
. (6.55)

Translating Equation 6.55 using the formulas for sinh and cosh as we have done before allows us
to recover the full set of transformations. These are the Lorentz transformations

𝑥′ = 𝛾 (𝑥 − 𝑣𝑡) 𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝛾
(
𝑡 − 𝑥𝑣/𝑐2)

where the Lorentz factor 𝛾 := 1/
√

1 − 𝑣2/𝑐2. Once again we recover the Galilean transformations
by taking 𝑐 → ∞. For 𝛾 to be a real number and thus our transformed coordinates to be real
numbers, we require |𝑣| < 𝑐. Therefore, according to the Lorentz transformations, it is not possible
for a physical object to be at or exceed the speed of light.
Challenge 72 Let reference frames 𝒮 and 𝒮′ be as defined previously.

(a) Show that the Lorentz transformations for transforming coordinates in reference frame 𝒮′ to
coordinates in reference frame 𝒮 are given by the following.

𝑥 = 𝛾 (𝑥′ + 𝑣𝑡′) 𝑦 = 𝑦′ 𝑧 = 𝑧′ 𝑡 = 𝛾
(
𝑡′ + 𝑥′𝑣/𝑐2)

(b) (Relativity of simultaneity) Suppose that event 𝐴 happens at location (𝑥𝐴 , 𝑦𝐴 , 𝑧𝐴 , 𝑡𝐴) and
event 𝐵 happens at location (𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵 , 𝑡𝐵) according to reference frame 𝒮. If 𝑡𝐴 = 𝑡𝐵 but
𝑥𝐴 ≠ 𝑥𝐵, use the Lorentz transformation for 𝑡 ↦→ 𝑡′ to transform the time coordinate of both
events into reference frame 𝒮′ and show that 𝑡′

𝐴
− 𝑡′

𝐵
= [𝑥𝐵 − 𝑥𝐴] 𝛾𝑣/𝑐2. Simultaneous events

in one reference frame are not simultaneous in a different reference frame!
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(c) (Length contraction) Suppose we have a stick lying on the 𝑥/𝑥′-axis that is moving at speed
𝑣 to the left along with reference frame 𝒮′. Thus the stick is stationary according to reference
frame 𝒮′ and its length is 𝑙′ := 𝑥′𝑟 − 𝑥′𝑙 , where 𝑥′𝑟 is the location of the right end of the stick in
reference frame 𝒮′ and 𝑥′

𝑙
is the location of the left end of the stick in reference frame 𝒮′. Let

𝑙 := 𝑥𝑟 − 𝑥𝑙 and use the Lorentz transformation for 𝑥 ↦→ 𝑥′ to show that 𝑙 = 𝑙′/𝛾.21 Since 𝛾 > 1
when 𝑣 ≠ 0, a moving object is shorter along the direction of motion by a factor of 𝛾. Wow!

(d) (Time dilation) By part (b), events happening simultaneously in one reference frame at
different spatial locations are not simultaneous in other reference frames. To accommodate,
each spatial location in each reference frame has a separate clock that keeps track of time in
that spatial location, to be transformed as needed. Let us consider the clock at the origin
𝑥′ = 0, 𝑦′ = 0, 𝑧′ = 0 in reference frame 𝒮′ and suppose it measures the time from 𝑡′

𝑖
= 0 to

𝑡′
𝑓
= 𝑇′. Use the Lorentz transformation for the transformation 𝑡′ ↦→ 𝑡 from part (a) to show

that the clocks in reference frame 𝒮 measures a longer time interval 𝑇 = 𝛾𝑇′.22 Since the
origin of 𝒮′ is moving according to 𝒮, we see that moving clocks run slower!

The Lorentz transformations and its consequences (length contraction, the relativity of simul-
taneity, and time dilation) fly at the face of our normal everyday experiences and sound ridiculous!
Yet once we accept the postulates of special relativity, these are the logical conclusions. The math
tells us that our intuitive ideas about space and time require such radical reformulations.

You and Calculus
Starting from arithmetic, we have built up the magnificent edifice of calculus with the goal of

understanding the world around us. These investigations naturally led us to the revolutionary
advances by Newton, Schrödinger, Maxwell, and Einstein. Ironically, our efforts and investigations
have led to us to realize how little we truly know. Worse, we have seen that even the most basic
things we have assumed known about space, time, and the basic properties of particles were wrong
or incomplete.

However, there is yet another complementary point of view, for you could have discovered
any of these earth-shattering breakthroughs by investigating the natural questions that arise while
sticking to the belief that truth is to be found in simplicity. And the truth is simple.

You could have done it too.

You and Calculus

Newton Schrödinger

Maxwell Einstein

21We are considering the measurement of the stick done in reference frame 𝒮 and so time 𝑡 is assumed to be constant.
The time 𝑡′ in reference frame 𝒮′ is irrelevant as the stick is stationary at all times in 𝒮′.

22Notice that 𝑥′ is fixed at the origin of 𝒮′ since we are looking at one particular clock at the origin.
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Appendix

A.1 The Chain Rule

Consider a real-valued differentiable function 𝑓 defined in an open interval 𝐼 and let 𝑠 ∈ 𝐼.
Then there is a real number 𝜉 such that the following equation holds for each real number 𝑏.

𝑓 (𝑠 + 𝑏𝜖) = 𝑓 (𝑠) + 𝑏𝜉𝜖 (A.1)

This is the definition of differentiability at 𝑠 using dual numbers (see Section 2.3), and we denote
the number 𝜉 using the symbol 𝑓 ′(𝑠).

One way to interpret Equation A.1 is the following. If 𝑓 is differentiable at 𝑠, then the output
of 𝑓 given input 𝑠 + 𝑏𝜖 takes the form 𝑋 + 𝑌𝜖, where 𝑋 := 𝑓 (𝑠) and 𝑌 := 𝑏 𝑓 ′(𝑠). As an example,
consider the function 𝑓 : 𝑥 ↦→ 5(𝑥 + 3)2. Using the fact that 𝜖2 = 0 we have

𝑓 (𝑠 + 𝑏𝜖) = 5 ([𝑠 + 𝑏𝜖] + 3)2 = 5
(
𝑠2 + 6𝑠 + 9 + [2𝑠𝑏 + 6𝑏]𝜖

)
= 5

(
𝑠2 + 6𝑠 + 9

)
+ 𝑏 (10𝑠 + 30) 𝜖.

Therefore 𝑓 (𝑠) = 5
(
𝑠2 + 6𝑠 + 9

)
and 𝑓 ′(𝑠) = 10𝑠 + 30, as you should check.

We can be more explicit and introduce a computational graph which spells out all the operations
contained within a function. The computational graph of the function 𝑓 : 𝑥 ↦→ 5(𝑥 + 3)2 is shown
below.

×

5 ˆ

+

𝑥 3

2

We can evaluate the value of function 𝑓 at 𝑠 + 𝑏𝜖 by replacing the input node 𝑥 by 𝑠 + 𝑏𝜖 and
then applying all the computations specified. For example, to find the value of function 𝑓 at 0 + 𝜖,

181
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we first add 3 to 0+ 𝜖 to get 3+ 𝜖. Then we square it to get (3+ 𝜖)2 = 9+ 6𝜖 (recall that 𝜖2 := 0). We
then left multiply by the number 5 to get

𝑓 (0 + 𝜖) = 45 + 30𝜖.

By the definition of the derivative, we see that 𝑓 (0) = 45 and 𝑓 ′(0) = 30.

Multivariable differentiation
Differentiable functions: ℝ→ ℝ𝑛

We now extend our previous discussion to more general functions. First, let us consider a
vector-valued function 𝑓 := ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) defined on an interval 𝐼. As was the convention in
Chapter 6, each function 𝑓𝑖 is a real-valued differentiable function (defined on the interval 𝐼). To
draw a computational graph for function 𝑓 , we can draw a computational graph for each function
𝑓𝑖 . For example, if 𝑓 := ( 𝑓1 , 𝑓2) with 𝑓1 : 𝑥 ↦→ 5(𝑥 + 3)2 and 𝑓2 : 𝑥 ↦→ sin(3[𝑥 + 2]), then the
computational graph is as follows.

×

5 ˆ

+

𝑥 3

2

sin

×

3 +

𝑥 2

Figure A.2: Computational graph for the function
(
𝑥 ↦→ 5(𝑥 + 3)2 , 𝑥 ↦→ sin(3[𝑥 + 2])

)
.

We have already done a computation for the function 𝑓1 : 𝑥 ↦→ 5(𝑥 + 3)2 and so we will go
through the computational steps for the function 𝑓2 : 𝑥 ↦→ sin(3[𝑥 + 2]). We replace the node 𝑥
with the value 𝑠 + 𝑏𝜖 then add the number 2 to get (𝑠 + 2) + 𝑏𝜖. Then we multiply by 3 to get
(3𝑠 + 6) + 3𝑏𝜖, and then apply the cosine function at the top to obtain cos (3𝑠 + 6 + 3𝑏𝜖). Since
the sine function is differentiable with derivative cos, we see that sin (3𝑠 + 6 + 3𝑏𝜖) = sin(3𝑠 + 6) +
3𝑏 cos(3𝑠 + 6)𝜖. This means that 𝑓2(𝑠) = sin(3𝑠 + 6) and 𝑓 ′2(𝑠) = 3 cos(3𝑠 + 6). Therefore, 𝑓 (𝑠) =(
5(𝑠2 + 6𝑠 + 9), sin(3𝑠 + 6)

)T and 𝑓 ′(𝑠) = (10𝑠 + 30, 3 cos(3𝑠 + 6))T.
To summarize, a vector-valued function 𝑓 defined on an interval 𝐼 is differentiable at 𝑠 ∈ 𝐼 if

there are real numbers 𝜉1 , 𝜉2 , . . . , 𝜉𝑛 such that

©­­­­«
𝑓1(𝑠 + 𝑏𝜖)
𝑓2(𝑠 + 𝑏𝜖)

...
𝑓𝑛(𝑠 + 𝑏𝜖)

ª®®®®¬
=

©­­­­«
𝑓1(𝑠) + 𝑏𝜉1𝜖
𝑓2(𝑠) + 𝑏𝜉2𝜖

...
𝑓𝑛(𝑠) + 𝑏𝜉𝑛𝜖

ª®®®®¬
(A.3)

for each real number 𝑏. Each number 𝜉𝑖 is denoted 𝑓 ′
𝑖
(𝑡) and the derivative of function 𝑓 at 𝑠 is the

vector
(
𝑓 ′1(𝑠), 𝑓 ′2(𝑠), . . . , 𝑓 ′𝑛(𝑠)

)T, denoted by 𝑓 ′(𝑠). Equation A.3 can then be written succinctly as

𝑓 (𝑠 + 𝜖𝑏) = 𝑓 (𝑠) + 𝑏 𝑓 ′(𝑠)𝜖.
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Differentiable functions: ℝ𝑚 → ℝ

We now apply this to multivariable real-valued functions. As a concrete example, consider the
function 𝑓 : (𝑥1 , 𝑥2 , 𝑥3) ↦→ (𝑥2

1 − 𝑥2) log(3𝑥3). We can similarly create a computational graph for
function 𝑓 as shown below.

×

−

ˆ

𝑥1 2

𝑥2

log

×

𝑥2 𝑥3

Figure A.4: Computational graph for the function (𝑥1 , 𝑥2 , 𝑥3) ↦→ (𝑥2
1 − 𝑥2) log(𝑥2𝑥3).

As before, we go through the computational graph for an input 𝑠 + 𝜖. The complication is that
now there are three different inputs. To handle this, for each 𝑥𝑖 we assign the point 𝑠𝑖 + 𝜖𝑒𝑖 .

Let us calculate the output of function 𝑓 at (𝑠1 + 𝜖(1, 0, 0), 𝑠2 + 𝜖(0, 1, 0), 𝑠3 + 𝜖(0, 0, 1)). We start
from the bottom left and square 𝑥1 = (𝑠1 + 𝜖(1, 0, 0)) to get

𝑥2
1 = [𝑠1 + 𝜖(1, 0, 0)] [𝑠1 + 𝜖(1, 0, 0)] = 𝑠2

1 + 𝜖(𝑠1 , 0, 0) + 𝜖(𝑠1 , 0, 0) +�����
𝜖2(1, 0, 0) = 𝑠2

1 + 𝜖(2𝑠1 , 0, 0).

Next, we subtract 𝑥2 := 𝑠2 + 𝜖(0, 1, 0) and obtain

𝑥2
1 − 𝑥2 =

[
𝑠2

1 + 𝜖(2𝑠2
1 , 0, 0)

]
− [𝑠2 + 𝜖(0, 1, 0)] = 𝑠2

1 − 𝑠2 + 𝜖(2𝑠2
1 ,−1, 0).

Shifting to the nodes on the right gives us

log (𝑥2𝑥3) = log ([𝑠2 + 𝜖(0, 1, 0)] [𝑠3 + 𝜖(0, 0, 1)]) = log (𝑠2𝑠3 + 𝜖(0, 𝑠3 , 𝑠2)) .

Recall that the logarithm function is differentiable and so log(𝑥 + 𝑎𝜖) = log(𝑥) + 𝑎 1
𝑥 𝜖. Hence

log (𝑥2𝑥3) = log (𝑠2𝑠3 + 𝜖(0, 𝑠3 , 𝑠2)) = log(𝑠2𝑠3) + 𝜖(0, 1/𝑠3 , 1/𝑠2).

Therefore,

𝑓 (𝑥1 , 𝑥2 , 𝑥3) =
[
𝑠2

1 − 𝑠2 + 𝜖
(
2𝑠2

1 ,−1, 0
) ] [

log(𝑠2𝑠3) + 𝜖 (0, 1/𝑠3 , 1/𝑠2)
]

= (𝑠2
1 − 𝑠2) log(𝑠2𝑠3) + 𝜖

(
0, [𝑠2

1 − 𝑠2]/𝑠3 , [𝑠2
1 − 𝑠2]/𝑠2

)
+ 𝜖

(
2𝑠2

1 log(𝑠2𝑠3),− log(𝑠2𝑠3), 0
)

= (𝑠2
1 − 𝑠2) log(𝑠2𝑠3) + 𝜖

(
2𝑠2

1 log(𝑠2𝑠3), [𝑠2
1 − 𝑠2]/𝑠3 − log(𝑠2𝑠3), [𝑠2

1 − 𝑠2]/𝑠2
)

and we see that 𝑓 (𝑠1 , 𝑠2 , 𝑠3) = (𝑠2
1 − 𝑠2) log(𝑠2𝑠3)with

𝜕1 𝑓 (𝑠1 , 𝑠2 , 𝑠3) = 2𝑠2
1 log(𝑠2𝑠3) 𝜕2 𝑓 (𝑠) = [𝑠2

1 − 𝑠2]/𝑠3 − log(𝑠2𝑠3) 𝜕3 𝑓 (𝑠1 , 𝑠2 , 𝑠3) = [𝑠2
1 − 𝑠2]/𝑠2.
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To summarize, a real-valued function 𝑓 defined on an open rectangle 𝑅 in ℝ𝑚 is differentiable
at 𝑡 := (𝑠1 , 𝑠2 , . . . , 𝑠𝑚) ∈ 𝑅 if there are real numbers 𝜉1 , 𝜉2 , . . . , 𝜉𝑚 such that

𝑓

©­­­­«
𝑠1 + 𝑏1𝜖
𝑠2 + 𝑏2𝜖

...
𝑠𝑚 + 𝑏𝑚𝜖

ª®®®®¬
= 𝑓

©­­­­«
𝑠1
𝑠2
...
𝑠𝑚

ª®®®®¬
+

(
𝜉1 𝜉2 · · · 𝜉𝑚

) ©­­­­«
𝑏1𝜖
𝑏2𝜖
...

𝑏𝑚𝜖

ª®®®®¬
. (A.5)

for each collection of real numbers 𝑏1 , 𝑏2 , . . . , 𝑏𝑚 . We denote each 𝜉𝑖 by 𝜕𝑖 𝑓 (𝑡) and define the
derivative of 𝑓 at 𝑠 by 𝑓 ′(𝑠) :=

(
𝜕1 𝑓 (𝑠), 𝜕2 𝑓 (𝑠), · · · , 𝜕𝑚 𝑓 (𝑠)

)
. If we take 𝑏 := (𝑏1 , 𝑏2 , · · · , 𝑏𝑚)T, then

Equation A.5 can be written succinctly as

𝑓 (𝑠 + 𝜖𝑏) = 𝑓 (𝑠) + 𝑓 ′(𝑠)𝜖𝑏. (A.6)

The second term on the right can be thought of as a matrix vector product between 𝑓 ′(𝑠) and 𝜖𝑏.
In reality, just as the derivative 𝑓 ′ of a single variable function is a function, the derivative 𝑓 ′ is
also a function. However, if we represent 𝑓 ′(𝑠) as a vector, we obtain the gradient, which we denote
using the symbol ∇ 𝑓 (𝑠). If all of the real numbers 𝑏𝑖 are zero except 𝑏𝑘 , then Equation A.5 gives
the definition of the partial derivative 𝜕𝑘 𝑓 (𝑠).

Differentiable functions: ℝ𝑚 → ℝ𝑛

If we package several multivariable real-valued functions into one, we have a multivariable
vector valued function 𝑓 := ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) defined in a rectangle 𝑅 in ℝ𝑚 .1 The only real challenge
here is to package things together neatly so that we can simplify the notation.

We begin by reducing to the previous case, considering each scalar-valued function separately.
Indeed, we already know that if 𝑓𝑖 is differentiable at 𝑠 ∈ 𝑅, then 𝑓𝑖(𝑠 + 𝜖𝑏𝑖) = 𝑓𝑖(𝑠) + 𝑓 ′𝑖 (𝑠)𝜖𝑏𝑖 for
each real vector 𝑏𝑖 .2 We will combine these equations into one, as we did in Equation A.3.

Vector-valued function 𝑓 is differentiable at 𝑠 ∈ 𝑅 if the following equation holds for each real
vector 𝑏 := (𝑏1 , 𝑏2 , . . . , 𝑏𝑛). ©­­­­«

𝑓1(𝑠 + 𝜖𝑏)
𝑓2(𝑠 + 𝜖𝑏)

...

𝑓𝑛(𝑠 + 𝜖𝑏)

ª®®®®¬
=

©­­­­«
𝑓1(𝑠) + 𝑓 ′1(𝑠)𝜖𝑏
𝑓2(𝑠) + 𝑓 ′2(𝑠)𝜖𝑏

...

𝑓𝑛(𝑠) + 𝑓 ′𝑛(𝑠)𝜖𝑏

ª®®®®¬
(A.7)

The derivative of 𝑓 at 𝑠 ∈ 𝑅, written 𝑓 ′(𝑠), is defined to be the matrix

𝑓 ′(𝑠) :=
©­­­­«
𝑓 ′1(𝑠)
𝑓 ′2(𝑠)
...

𝑓 ′𝑛(𝑠)

ª®®®®¬
.

If we write out the matrix 𝑓 ′(𝑠) using the definition of the derivative of a real-valued function
𝑓 ′
𝑖
(𝑠) :=

(
𝜕1 𝑓𝑖(𝑠), 𝜕2 𝑓𝑖(𝑠), · · · , 𝜕𝑚 𝑓𝑖(𝑠)

)
, we see that the matrix is none other than the Jacobian matrix.

1As was the convention in Chapter 6, each function 𝑓𝑖 is a real-valued function defined on rectangle 𝑅.
2This is simply Equation A.6 indexed by 𝑖 ∈ {1, 2, . . . , 𝑛}.
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Here is an example of Equation A.7 written out when 𝑚 = 2 and 𝑛 = 3.

©­«
𝑓1(𝑠1 + 𝑏1𝜖, 𝑠2 + 𝑏2𝜖)
𝑓2(𝑠1 + 𝑏1𝜖, 𝑠2 + 𝑏2𝜖)
𝑓3(𝑠1 + 𝑏1𝜖, 𝑠2 + 𝑏2𝜖)

ª®¬ =
©­«
𝑓1(𝑠1 , 𝑠2)
𝑓2(𝑠1 , 𝑠2)
𝑓3(𝑠1 , 𝑠2)

ª®¬ + ©­«
𝜕1 𝑓1(𝑠1)𝑏1𝜖 𝜕2 𝑓1(𝑠2)𝑏2𝜖
𝜕1 𝑓2(𝑠1)𝑏1𝜖 𝜕2 𝑓2(𝑠2)𝑏2𝜖
𝜕1 𝑓3(𝑠1)𝑏1𝜖 𝜕2 𝑓3(𝑠2)𝑏2𝜖

ª®¬
Observe that the second term on the right is the matrix-vector multiplication of matrix 𝑓 ′(𝑠) and
vector 𝜖𝑏 where 𝑏 := (𝑏1 , 𝑏2)T. Indeed,

𝑓 ′(𝑠)𝜖𝑏 = ©­«
𝜕1 𝑓1(𝑠) 𝜕2 𝑓1(𝑠)
𝜕1 𝑓2(𝑠) 𝜕2 𝑓2(𝑠)
𝜕1 𝑓3(𝑠) 𝜕2 𝑓3(𝑠)

ª®¬
(
𝑏1𝜖
𝑏2𝜖

)
=

©­«
𝜕1 𝑓1(𝑠1)𝑏1𝜖 𝜕2 𝑓1(𝑠2)𝑏2𝜖
𝜕1 𝑓2(𝑠1)𝑏1𝜖 𝜕2 𝑓2(𝑠2)𝑏2𝜖
𝜕1 𝑓3(𝑠1)𝑏1𝜖 𝜕2 𝑓3(𝑠2)𝑏2𝜖

ª®¬ .
Therefore, Equation A.7 simplifies to

𝑓 (𝑠 + 𝜖𝑏) = 𝑓 (𝑠) + 𝑓 ′(𝑠)𝜖𝑏.
Challenge 73

(a) The complex function 𝑓 : 𝑧 ↦→ 𝑧 maybe interpreted as a function of two real variables that

outputs two real numbers by representing 𝑓 as 𝑓 (𝑥, 𝑦) =
(
𝑥
𝑦

)
where 𝑥 := Re 𝑧 and 𝑦 := Im 𝑧.

Calculate the Jacobian matrix 𝐽 𝑓 and interpret the real matrix as a complex number.

(b) We can represent the complex function 𝑔 : 𝑧 ↦→ 𝑧2 by 𝑔(𝑥, 𝑦) =
(
𝑥2 − 𝑦2

2𝑥𝑦

)
where 𝑥 := Re 𝑧

and 𝑦 := Im 𝑧. Calculate the Jacobian matrix 𝐽𝑔 and interpret the real matrix as a complex
function. Is it as you expected?

(c) If 𝑓 is a differentiable complex-valued function whose inputs are complex numbers, then 𝐽 𝑓

must have the form
(
𝛼 −𝛽
𝛽 𝛼

)
because the derivative of 𝑓 better be complex! Conclude that a

complex-valued function 𝑓 (𝑥 + 𝑖𝑦) := 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) for real 𝑥 and 𝑦 is differentiable if the
Cauchy-Riemann equations 𝜕𝑥𝑢 = 𝜕𝑦𝑣 and 𝜕𝑦𝑢 = −𝜕𝑥𝑣 hold.

The chain rule
One of the great things about dual numbers is that once the basic derivatives are known,

derivatives of composition of differentiable functions with known derivatives is a straightforward
arithmetic. We have seen this in action while going through computational graphs where we
calculated derivatives without calculating derivatives!

This means that the chain rule becomes a trivial, self-evident statement. We have already seen
this in Section 2.3. As a review, let us re-derive the single variable chain rule. Suppose we have
an open interval 𝐼 and differentiable functions 𝑔 : 𝐼 → ℝ and 𝑓 : 𝑔(𝐼) → ℝ. Since 𝑔 and 𝑓 are
differentiable, the following equations hold for each 𝑠 ∈ 𝐼, 𝑡 ∈ 𝑔(𝐼), and real numbers 𝑎, 𝑏.

𝑔(𝑠 + 𝑎𝜖) = 𝑔(𝑠) + 𝑎𝑔′(𝑠)𝜖 𝑓 (𝑡 + 𝑏𝜖) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝑏𝜖
Put 𝑡 := 𝑔(𝑠) and 𝑏 := 𝑎𝑔′(𝑠) to chain the functions together. Then 𝑔(𝑠 + 𝑎𝜖) = 𝑡 + 𝑏𝜖 and so

𝑓
(
𝑔(𝑠 + 𝑎𝜖)

)
= 𝑓

(
𝑔(𝑠)

)
+ 𝑎 𝑓 ′

(
𝑔(𝑠)

)
𝑔′(𝑠)𝜖.

Therefore 𝑓 ◦ 𝑔 is differentiable with ( 𝑓 ◦ 𝑔)′ : 𝑠 ↦→ ( 𝑓 ′ ◦ 𝑔)(𝑠)𝑔′(𝑠). We now generalize.
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Theorem 82 (The Chain Rule). Let 𝑔 := (𝑔1 , 𝑔2 , . . . , 𝑔𝑛) be a function defined on an open rectangle
𝑅 in ℝ𝑚 and let 𝑓 :=

(
𝑓1 , 𝑓2 , . . . , 𝑓𝑙

)
be a function defined on 𝑔(𝑅). If 𝑔 is differentiable at 𝑠 and 𝑓 is

differentiable at 𝑔(𝑠), then 𝑓 ◦ 𝑔 is differentiable at 𝑠 with ( 𝑓 ◦ 𝑔)′(𝑠) = ( 𝑓 ′ ◦ 𝑔)(𝑠)𝑔′(𝑠).

Proof. Since 𝑔 is differentiable at 𝑠 and 𝑓 is differentiable at 𝑡 := 𝑔(𝑠), the following equations hold
for real vectors 𝑎 := (𝑎1 , 𝑎2 , . . . , 𝑎𝑚)T and 𝑏 := (𝑏1 , 𝑏2 , . . . , 𝑏𝑛)T.

𝑔(𝑠 + 𝜖𝑎) = 𝑔(𝑠) + 𝑔′(𝑠)𝜖𝑎 𝑓 (𝑡 + 𝜖𝑏) = 𝑓 (𝑡) + 𝑓 ′(𝑡)𝜖𝑏

Put 𝑏 := 𝑔′(𝑠)𝑎 to chain the functions together. Then 𝑔(𝑠 + 𝑎𝜖) = 𝑡 + 𝜖𝑏 and so

𝑓
(
𝑔(𝑠 + 𝜖𝑎)

)
= 𝑓

(
𝑔(𝑠)

)
+ 𝑓 ′

(
𝑔(𝑠)

)
𝑔′(𝑠)𝜖𝑎.

Therefore 𝑓 ◦ 𝑔 is differentiable at 𝑠 with ( 𝑓 ◦ 𝑔)′(𝑠) = ( 𝑓 ′ ◦ 𝑔)(𝑠)𝑔′(𝑠).

Let us unpack what the chain rule says. Let 𝑔 := (𝑔1 , 𝑔2) be a differentiable function defined on
an open rectangle 𝑅 in ℝ3 and let 𝑓 := ( 𝑓1 , 𝑓2 , 𝑓3) be a differentiable function defined on 𝑔(𝑅). Since
𝑔 is differentiable at 𝑠 := (𝑠1 , 𝑠2 , 𝑠3) ∈ 𝑅, for each real vector 𝑎 := (𝑎1 , 𝑎2 , 𝑎3), the following equation
holds. (

𝑔1(𝑠1 + 𝑎1𝜖, 𝑠2 + 𝑎2𝜖, 𝑠3 + 𝑎3𝜖)
𝑔2(𝑠1 + 𝑎1𝜖, 𝑠2 + 𝑎2𝜖, 𝑠3 + 𝑎3𝜖)

)
=

(
𝑔1(𝑠)
𝑔2(𝑠)

)
+

(
𝜕1𝑔1(𝑠) 𝜕2𝑔1(𝑠) 𝜕3𝑔1(𝑠)
𝜕1𝑔2(𝑠) 𝜕2𝑔2(𝑠) 𝜕3𝑔2(𝑠)

)
𝜖
©­«
𝑎1
𝑎2
𝑎3

ª®¬
Similarly, as 𝑓 is differentiable at each 𝑡 := (𝑡1 , 𝑡2) ∈ 𝑔(𝑅), the following equation holds for each
collection of real numbers 𝑏1 and 𝑏2.

©­«
𝑓1(𝑡1 + 𝑏1𝜖, 𝑡2 + 𝑏2𝜖)
𝑓2(𝑡1 + 𝑏1𝜖, 𝑡2 + 𝑏2𝜖)
𝑓3(𝑡1 + 𝑏1𝜖, 𝑡2 + 𝑏2𝜖)

ª®¬ =
©­«
𝑓1(𝑡)
𝑓2(𝑡)
𝑓3(𝑡)

ª®¬ + ©­«
𝜕1 𝑓1(𝑡) 𝜕2 𝑓1(𝑡)
𝜕1 𝑓2(𝑡) 𝜕2 𝑓2(𝑡)
𝜕1 𝑓3(𝑡) 𝜕2 𝑓3(𝑡)

ª®¬ 𝜖
(
𝑏1
𝑏2

)
(A.8)

To chain the two functions together, define the following(
𝑡1
𝑡2

)
:=

(
𝑔1(𝑠)
𝑔2(𝑠)

) (
𝑏1
𝑏2

)
:=

(
𝜕1𝑔1(𝑠) 𝜕2𝑔1(𝑠) 𝜕3𝑔1(𝑠)
𝜕1𝑔2(𝑠) 𝜕2𝑔2(𝑠) 𝜕3𝑔2(𝑠)

) ©­«
𝑎1
𝑎2
𝑎3

ª®¬
so that 𝑡 := 𝑔(𝑠), 𝑏 := 𝑔′(𝑠)𝑎, and 𝑔(𝑠 + 𝜖𝑎) = 𝑡 + 𝜖𝑏. Then Equation A.8 becomes

( 𝑓 ◦ 𝑔)(𝑠 + 𝑎𝜖) = 𝑓 ◦ 𝑔(𝑠) +
[
𝑓 ′ ◦ 𝑔(𝑠)

] [
𝑔′(𝑠)𝜖𝑎

]
.

Challenge 74
(a) Let id : ℝ𝑛 → ℝ𝑛 be defined by id : 𝑣 ↦→ 𝑣. Check that id′(𝑡) = 1. Let 𝐴 : ℝ𝑚 → ℝ𝑛 be linear

(that is, 𝐴[𝑐𝑣 + 𝑑𝑤] = 𝑐𝐴𝑣 + 𝑑𝐴𝑤).3 Check that 𝐴 is differentiable with 𝐴′(𝑡) = 𝐴.
(b) Let 𝑔 := (𝑔1 , 𝑔2 , . . . , 𝑔𝑛) be a differentiable function defined on an open rectangle 𝑅 in ℝ𝑚

and let 𝑓 be a differentiable real-valued function defined on 𝑔(𝑅). If 𝑠 ∈ 𝑅, show that

𝜕𝑖( 𝑓 ◦ 𝑔)(𝑠) =
𝑛∑
𝑗=1

𝜕𝑗 𝑓
(
𝑔(𝑡)

)
· 𝜕𝑖 𝑔𝑗(𝑠). (A.9)

3As a linear function ℝ𝑚 → ℝ𝑛 is essentially a matrix, 𝐴(𝑣) is the same as 𝐴𝑣. For example, 1(𝑡) is the same as 1𝑡.
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Although Equation A.9 is a special case of the general chain rule, it really embodies everything
one needs to know about the general chain rule. Indeed, if we want to compute the derivative
of a multivariable vector-valued function ℎ := (ℎ1 , ℎ2 , . . . , ℎ𝑙) that is a composition of functions, it
is sufficient to consider each scalar valued function ℎ𝑖 separately and compute the derivative ℎ′

𝑖
,

which in vector form is just the gradient ∇ℎ𝑖 . But to compute the gradient ∇ℎ𝑖 , it is sufficient to
compute the partial derivatives 𝜕𝑘 ℎ𝑖 separately, for which Equation A.9 can be used.

Sometimes we encounter functions with interdependencies that do not admit an easy appli-
cation of Equation A.9. This is not a problem of course, as we know how to take derivatives of
arbitrary compositions of differentiable functions without actually calculating derivatives. Never-
theless, consider the function ℎ : (x, y, z) ↦→ 𝑓 (𝑤(x, y), z)whose dependancy graph is shown below.

𝑓

x

𝑤

x y

y

z

If we wish to apply the chain rule, we encounter a problem. To fix this, define the functions
𝑔1 : (x, y, z) ↦→ 𝑤(x, y) and 𝑔2 : (x, y, z) ↦→ z so that ℎ = 𝑓 ◦ 𝑔, where 𝑔 := (𝑔1 , 𝑔2). The dependancy
graph of function ℎ with these new functions is shown below, where the nodes with a blue shade
represent the “phantom" inputs which do nothing.

𝑓

x

𝑔1

x y z

y

𝑔2

x y z

We can then apply Equation A.9 to obtain the following partial derivatives at 𝑠 := (𝑠1 , 𝑠2 , 𝑠3).

𝜕x( 𝑓 ◦ 𝑔)(𝑠) = 𝜕x 𝑓
(
𝑔(𝑠)

)
· 𝜕x𝑔1(𝑠) +(((((((((

𝜕y 𝑓
(
𝑔(𝑠)

)
· 𝜕x𝑔2(𝑠) = 𝜕x 𝑓 (𝑤(𝑠1 , 𝑠2), 𝑠3) · 𝜕x𝑤(𝑠1 , 𝑠2)

𝜕y( 𝑓 ◦ 𝑔)(𝑠) = 𝜕x 𝑓
(
𝑔(𝑠)

)
· 𝜕y𝑔1(𝑠) +(((((((((

𝜕y 𝑓
(
𝑔(𝑠)

)
· 𝜕y𝑔2(𝑠) = 𝜕x 𝑓 (𝑤(𝑠1 , 𝑠2), 𝑠3) · 𝜕y𝑤(𝑠1 , 𝑠2)

𝜕z( 𝑓 ◦ 𝑔)(𝑠) =(((((((((
𝜕x 𝑓

(
𝑔(𝑠)

)
· 𝜕z𝑔1(𝑠) + 𝜕y 𝑓

(
𝑔(𝑠)

)
· 𝜕z𝑔2(𝑠) = 𝜕y 𝑓 (𝑤(𝑠1 , 𝑠2), 𝑠3) · 1
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Answers

Below are the answers to the Challenges in the first four chapters.

Challenge 1 (a)

55 × 3
53 = (5 × 5 × �5 × �5 × �5) ×

3
�5 × �5 × �5

= 5 × 5 × 3 = 52 × 3,

55 × 3
53

22 =
52 × 3

22 .

(b) Since density is Mass/Length3, we have

Length5 × density
Time2 =

Length5 ×Mass/Length3

Time2 =
Length2 ×Mass

Time2 .

This is the same as Energy.
(c) Only the second expression is valid.

Challenge 2 (a) We do a few check to verify that the equation 𝐸 = 𝑅5𝜌/𝑡2 makes sense. Indeed,
an increase in blast radius 𝑅 is associated with an increase in energy 𝐸. If 𝑅 and time 𝑡
were the same, but density 𝜌 was higher, then 𝐸 must have been higher as well. It time
𝑡 to reach radius 𝑅 was smaller, then 𝐸 must have been smaller. These facts agree with
the equation 𝐸 = 𝑅5𝜌/𝑡2.

(b) The radius 𝑅 of the blast looks to be about 150 meters to me. The time 𝑡 is given as
0.025 seconds. With 𝜌 = 1.2 kg/m3, we have

𝐸 =
1.55 · 1005 m5 · 1 kg/m3

0.0252 s
=

1.55 · 1010 m5 · 1 kg/m3

2.52 · 10−4 s
and a value 𝐸 of about 1.2 × 1014 kg·m2/s2.

(c)
1.2 × 1014 joule

4.2 · 109 = 0.29 · 105 tons of TNT.

Divide by a thousand (103) to get that 𝐸 is about 29 kilotons.

189
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(d) Looking up the yield at https://en.wikipedia.org/wiki/Trinity_(nuclear_test),
we can see that the yield was actually about 25 kilotons. The closest integer value of 𝛽
is 1.

Challenge 3 (a) Using the fact that (𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑, we get

(10 + 𝑥)(10 + 𝑦) = 10 · 10 + 10 · 𝑦 + 10 · 𝑥 + 𝑥 · 𝑦.

The first three terms are multiples of 10. Therefore,

(10 + 𝑥)(10 + 𝑦) = 10 · 10 + 10 · 𝑦 + 10 · 𝑥 + 𝑥 · 𝑦 = 10 · (10 + 𝑥 + 𝑦) + 𝑥𝑦.

(b) Using the formula obtained from the previous part, with 𝑥 = 6 and 𝑦 = 4, we need
only add a zero to the sum 10 + 6 + 4, then add 24 to get 224.
In order to do the multiplication 116 · 114, we use the same formula from part b, except
we switch the ‘10’ with ‘100’:

(10 + 𝑥)(10 + 𝑦) = 10 · (10 + 𝑥 + 𝑦) + 𝑥𝑦 → (100 + 𝑥)(100 + 𝑦) = 100 · (100 + 𝑥 + 𝑦) + 𝑥𝑦.

Hence we need only add two zeros to the sum 100+ 16+ 14, and add 16 · 14, which we
already know to be 224, to get 13224.

Challenge 4 We already know that the equation ( 𝑓1 + 𝑓2 + · · · + 𝑓𝑛)′ = 𝑓 ′1 + 𝑓 ′2 + · · · + 𝑓 ′𝑛 holds if 𝑛 is
1 or 2. Let 𝑆 be the collection of positive natural numbers for which the equation does not
hold. If 𝑆 is nonempty, by the well-ordering principle, there is a smallest positive natural
number 𝑚 belong to collection 𝑆. Notice that 𝑚 > 2 and that the natural number 𝑚 − 1 does
not belong in the collection 𝑆. Let 𝑋 := 𝑓1 + 𝑓2 + · · · + 𝑓𝑚−1. Since 𝑚 − 1 does not belong in
the collection 𝑆, we know that

( 𝑓1 + 𝑓2 + · · · + 𝑓𝑚−1)′ = 𝑋′ = 𝑓 ′1 + 𝑓 ′2 + · · · + 𝑓 ′𝑚−1.

By the sum rule, (𝑋 + 𝑓𝑚)′ = 𝑋′ + 𝑓 ′𝑚 and so

( 𝑓1 + 𝑓2 + · · · + 𝑓𝑚−1 + 𝑓𝑚)′ = (𝑋 + 𝑓𝑚)′ = 𝑋′ + 𝑓 ′𝑚 = 𝑓 ′1 + 𝑓 ′2 + · · · + 𝑓 ′𝑚−1 + 𝑓 ′𝑚 .

We see that the equation holds for𝑚, and so natural number𝑚 does not belong in collection
𝑆. Since 𝑆 has no smallest element, it must be an empty collection.

Challenge 5 (a) We can write
∑𝑘
𝑖=1 𝑖

3. Of course, the choice of the letter “𝑖" is arbitrary. The
expressions

∑𝑘
𝑎=1 𝑎

3 or
∑𝑘

𝜏=1 𝜏
3, and so on would be perfectly acceptable, as long as the

indexing variable used is a single symbol.
(b) Since (1 + 𝑋)3 = (1 + 𝑋)2(1 + 𝑋), or equivalently, (1 + 𝑋)3 = (1 + 𝑋)(1 + 𝑋)2, we have

(1 + 𝑋)3 = (1 + 𝑋)2(1 + 𝑋) = (1 + 2𝑋 + 𝑋2)(1 + 𝑋)
= (1 + 2𝑋 + 𝑋2) + 𝑋(1 + 2𝑋 + 𝑋2) = 1 + 3𝑋 + 3𝑋2 + 𝑋3.

(c) Certainly 1 = 1 · 2/2, 1 + 2 = 3 = 2 · 3/2, and 1 + 2 + 3 = 6 = 3 · 4/2.

https://en.wikipedia.org/wiki/Trinity_(nuclear_test)
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(d) Let 𝑆 be the collection of positive natural numbers 𝑛 such that
∑𝑛
𝑘=1 𝑘 ≠ 𝑛(𝑛 + 1)/2. If 𝑆

is not an empty collection, by the well-ordering principle there is some smallest natural
number 𝑚, greater than 3, such that 𝑚 belongs to the collection 𝑆. In particular, 𝑚 − 1
does not belong in the collection 𝑆, and so the following holds.

𝑚−1∑
𝑘=1

𝑘 =
(𝑚 − 1)𝑚

2

Then

𝑚∑
𝑘=1

𝑘 = 𝑚 +
𝑚−1∑
𝑘=1

𝑘 = 𝑚 + (𝑚 − 1)𝑚
2 =

2𝑚
2 +

𝑚2 − 𝑚
2 =

𝑚2 + 𝑚
2 =

𝑚(𝑚 + 1)
2

which shows that 𝑚 does not belong to the collection 𝑆. Therefore, 𝑆 is an empty
collection, and the equation

∑𝑛
𝑘=1 𝑘 = 𝑛(𝑛 + 1)/2 is true for each natural number 𝑛.

Challenge 6 (a) If 𝑎 ≥ 0 and 𝑏 ≥ 0, then 𝑎𝑏 ≥ 0 and so

|𝑎|𝑏| = 𝑎𝑏 = |𝑎𝑏|.

If 𝑎 ≤ 0 and 𝑏 ≤ 0, then 𝑎𝑏 ≥ 0 and so

|𝑎||𝑏| = −𝑎 · (−𝑏) = 𝑎𝑏 = |𝑎𝑏|.

The only remaining case is where exactly one is positive and the other is negative. Let
us suppose that 𝑎 < 0 and 𝑏 > 0. Then their product 𝑎𝑏 is negative and we have

|𝑎𝑏| = −(𝑎𝑏) = −𝑎 · 𝑏 = |𝑎| · |𝑏|.

(b) By part (a) |1/𝑏||𝑏| = |(1/𝑏) · 𝑏| and so

|1/𝑏||𝑏| = |(1/𝑏) · 𝑏| = |1| = 1.

Dividing both sides of the equation |1/𝑏||𝑏| = 1 by nonzero |𝑏|, we have |1/𝑏| = 1/|𝑏|.
(c) By part (b), 1/|𝑏| = |1/𝑏| and so

|𝑎|/|𝑏| = |𝑎| · (1/|𝑏|) = |𝑎| · |1/𝑏|.

By part (a), |𝑎| · |1/𝑏| = |𝑎 · (1/𝑏)| and so

|𝑎|/|𝑏| = |𝑎| · |1/𝑏| = |𝑎 · (1/𝑏)| = |𝑎/𝑏|.

(d) It is sufficient to show that |𝑎| ≤ |𝑎 − 𝑏| + |𝑏|. But this is simply the triangle inequality
|𝑐 + 𝑑| ≤ |𝑐| + |𝑑| for 𝑐 := 𝑎 − 𝑏 and 𝑑 := 𝑏. Done!

Challenge 7 (a) The terms 𝑓 (𝑘)(0)/𝑘! are the coefficients of the polynomial 𝑓 . For example, if
𝑓 is the polynomial 7𝑥5 + 2𝑥3 + 5, then 𝑓 (5)(0)/5! = 7, 𝑓 (4)(0)/4! = 0, 𝑓 (3)(0)/3! = 2,
𝑓 (2)(0)/2! = 0, 𝑓 (1)(0)/1! = 0, and 𝑓 (0)(0) = 5.
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(b) Applying the power rule with the chain rule,

𝑓 (0) = (𝑥 + 𝑏)𝑛 , 𝑓 (1)(𝑥) = 𝑛(𝑥 + 𝑏)𝑛−1 , 𝑓 (2)(𝑥) = 𝑛(𝑛 − 1)(𝑥 + 𝑏)𝑛−2.

Since
(
𝑛
0
)
= 1,

(
𝑛
1
)
= 𝑛

1 and
(
𝑛
2
)
=

𝑛(𝑛−1)
2·1 , we have

𝑓 (0) = 0!
(
𝑛

0

)
(𝑥 + 𝑏)𝑛−0 𝑓 (1)(𝑥) = 1!

(
𝑛

1

)
(𝑥 + 𝑏)𝑛−1 , 𝑓 (2)(𝑥) = 2!

(
𝑛

2

)
(𝑥 + 𝑏)𝑛−2.

Thus if 𝑘 ≤ 𝑛, we can guess that

𝑓 (𝑘)(𝑥) = 𝑘!
(
𝑛

𝑘

)
(𝑥 + 𝑏)𝑛−𝑘 .

(c) The expression (𝑥 + 𝑏)𝑛 is a polynomial of degree 𝑛. Applying the result of part (b) to
part (a) gives

(𝑥 + 𝑏)𝑛 =

𝑛∑
𝑘=0

𝑓 (𝑘)(0)
𝑘! 𝑥𝑘 =

𝑛∑
𝑘=0

1
𝑘!

(
𝑘!

(
𝑛

𝑘

)
𝑏𝑛−𝑘

)
𝑥𝑘 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘𝑏𝑛−𝑘 .

Substituting 𝑥 with 𝑎, we obtain the binomial formula

(𝑎 + 𝑏)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑎𝑘𝑏𝑛−𝑘 .

Challenge 8 (a) ( 𝑓 ◦ 𝑔)(𝑥) = (𝑔 ◦ 𝑓 )(𝑥) = 𝑥2 and so ( 𝑓 ◦ 𝑔)′(0) = (𝑔 ◦ 𝑓 )′(0) = 0.
(b) The relu function is the zero function for negative inputs and 𝑥 ↦→ 𝑥 for 𝑥 ≥ 0. Thus for

negative inputs, the derivative is zero while for positive values, relu′(𝑥) = 1. However,
the relu function is not differentiable at 0. If 𝛼 > 0, then

relu(0 + 𝛼) = 0 + 𝛼 = relu(0) + 1 · 𝛼

and so it appears that relu′(0) = 1, but if 𝛼 < 0, then

relu(0 + 𝛼) = 0 + 0 = relu(0) + 0 · 𝛼

and so it appears that relu′(0) = 0, which shows that the relu function is not differen-
tiable at 0.

(c) Let 𝑔 := 𝑓 ◦ relu, ℎ := relu ◦ 𝑓 and observe that 𝑔(0) = ℎ(0) = 𝑓 (0) = 0. If 𝛼 > 0, then
by the power rule:

𝑔(0 + 𝛼) = 𝑓 (0 + 𝛼) = 𝑓 (0) + 𝑓 ′(0) · 𝛼 + |𝛼|𝑜(1) = 𝑔(0) + 0 · 𝛼 + |𝛼|𝑜(1)

and if 𝛼 < 0, then
𝑔(0 + 𝛼) = 0 = 0 + 0 · 𝛼.

Therefore, 𝑔′(0) = 0. Repeating the same argument, replacing the label 𝑔 with ℎ, gives
ℎ′(0) = 0. Notice that the argument does not work if 𝑓 : 𝑥 ↦→ 𝑥 because 𝑓 ′(0) = 1.
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(d) If 𝑓 ′(0) exists, then by the sum rule, the relu function is differentiable at 0, which is
false by part (b). Thus 𝑓 ′(0) does not exist. Similarly, 𝑔′(0) does not exist. However,
𝑓 ◦ 𝑔 = 𝑔 ◦ 𝑓 = 0, and so ( 𝑓 ◦ 𝑔)′(0) = (𝑔 ◦ 𝑓 )′(0) = 0.

Challenge 9 We cannot conclude that ℎ is continuous! If ℎ is a function that it zero everywhere
except at the origin, where ℎ(0) = 1, then ℎ is not continuous, even though ℎ(𝑡+𝛼)−ℎ(𝑡−𝛼) =
𝑜(1) for each input 𝑡.

Challenge 10 (a) Dimensional analysis gives 𝑥 = 𝑐1𝑥𝑖 + 𝑐2(𝑣𝑖 + 𝑣)𝑡. The constants are 𝑐1 = 1 and
𝑐2 = 1/2.

(b) Dimensional analysis gives 𝑥 = 𝑐1𝑥𝑖 + 𝑐2𝑣𝑖𝑡 + 𝑐3𝑎𝑡
2. The constants are 𝑐1 = 1, 𝑐2 = 1,

and 𝑐3 = 1/2.
(c) Dimensional analysis gives 𝑣 = 𝑐1𝑣𝑖 + 𝑐2𝑎𝑡. The constants are 𝑐1 = 1 and 𝑐2 = 1.
(d) Dimensional analysis gives 𝑣2 = 𝑐1𝑣

2
𝑖
+ 𝑐2𝑎(𝑥 − 𝑥𝑖). The constants are 𝑐1 = 1 and 𝑐2 = 2.

(e) Indeed, 𝑣 = 𝑥′ = 𝑣𝑖 + 𝑎𝑡 and 𝑥′′ = 𝑎. Furthermore, following the instructions recovers
the formula 𝑣2 = 𝑣2

𝑖
+ 2𝑎(𝑥 − 𝑥𝑖) of part (d).

Challenge 11 (a) ∫ ℎ

0
𝜋 (𝑟𝑥/ℎ)2 𝑑𝑥 =

𝜋𝑟2

ℎ2 ·
ℎ3

3 =
𝜋𝑟2ℎ

3 .

(b) ∫ 𝑟

−𝑟
𝜋

(√
𝑟2 − 𝑥2

)2
𝑑𝑥 =

(
𝜋𝑟2𝑥 − 𝜋 𝑥

3

3

)����𝑟
−𝑟

=
4
3𝜋𝑟

3.

Challenge 12 (a) Since d𝑒𝑥
d𝑥 = 𝑒𝑥 , we see that the exponential function is its own velocity. For the

units to match up, 𝑥 must be dimensionless.
Since d log 𝑥

d𝑥 = 𝑥−1, for the units to match up, log 𝑥 must be dimensionless.
(b) From the definition log(1) = 0. If the logarithm function accepts inputs with units,

then we get the contradiction that log(1 m) = 0 and 0 = log(1 km) = log(1000 m). The
number 1 in the definition of log must be dimensionless, and as we are integrating
from 1 to 𝑥, the latter must also be dimensionless.
Since d2 cos 𝑥

d𝑥2 = − cos 𝑥, the acceleration of cos 𝑥 is itself (with a minus sign). To match
the units, we need 𝑥 to be dimensionless. The same reasoning applies to the sin
function.

(c) Since log 𝑥𝑦 = log 𝑥 + 𝑦,

log 𝑒𝑥𝑒𝑦 = log 𝑒𝑥 + log 𝑒𝑦 = 𝑥 + 𝑦 = log 𝑒𝑥+𝑦 .

Apply exp to both sides of log 𝑒𝑥𝑒𝑦 = log 𝑒𝑥+𝑦 . The fact that 𝑒0 = 1 follows from:

𝑒𝑥𝑒0 = 𝑒𝑥+0 = 𝑒𝑥 .

Challenge 13 (a) Certainly 𝑓𝑒(𝑥) = 𝑓𝑒(−𝑥) and 𝑓𝑜(𝑥) = − 𝑓𝑜(−𝑥) are both true for each 𝑥.
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(b) Since 𝑓1 is even and 𝑓2 is odd, we know that

𝑓 (−𝑥) = 𝑓1(−𝑥) + 𝑓2(−𝑥) = 𝑓1(𝑥) − 𝑓2(𝑥).

Solving for 𝑓1 and 𝑓2 gives the following.

𝑓1(𝑥) = 𝑓 (−𝑥) + 𝑓2(𝑥), 𝑓2(𝑥) = 𝑓1(𝑥) − 𝑓 (−𝑥)

We use the decomposition 𝑓 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) to get

𝑓1(𝑥) = 𝑓 (−𝑥) + 𝑓 (𝑥) − 𝑓1(𝑥), 𝑓2(𝑥) = 𝑓 (𝑥) − 𝑓2(𝑥) − 𝑓 (−𝑥).

Observe that 𝑓1(𝑥) is precisely 𝑓𝑒 and 𝑓2(𝑥) is precisely 𝑓𝑜 as defined in part (a).

Challenge 14 (a) cosh2 𝑥 − sinh2 𝑥 = (𝑒𝑥 + 𝑒−𝑥)2/4 − (𝑒𝑥 − 𝑒−𝑥)2/4 = (𝑒2𝑥 + 2𝑒𝑥𝑒−𝑥 + 𝑒−2𝑥 − 𝑒2𝑥 +
2𝑒𝑥𝑒−𝑥 − 𝑒−2𝑥)/4 = (4𝑒𝑥𝑒−𝑥)/4 = 𝑒𝑥−𝑥 = 𝑒0 = 1.

(b) sinh 𝑥 cosh 𝑦 + cosh 𝑥 sinh 𝑦 = [(𝑒𝑥 − 𝑒−𝑥)(𝑒𝑦 + 𝑒−𝑦) + (𝑒𝑥 + 𝑒−𝑥)(𝑒𝑦 − 𝑒−𝑦)]/4 = [𝑒𝑥+𝑦 +
𝑒𝑥−𝑦 − 𝑒−𝑥+𝑦 − 𝑒−𝑥−𝑦 + 𝑒𝑥+𝑦 − 𝑒𝑥−𝑦 + 𝑒−𝑥+𝑦 − 𝑒−𝑥−𝑦]/4 = (𝑒𝑥+𝑦 − 𝑒−𝑥−𝑦)/2 = sinh

(
𝑥 + 𝑦

)
.

(c) tanh 𝑥√
1−tanh2 𝑥

= tanh 𝑥√
(cosh2 𝑥)/(cosh2 𝑥)−(sinh2 𝑥)/(cosh2 𝑥)

= tanh 𝑥√
1/(cosh2 𝑥)

=
sinh 𝑥/cosh 𝑥

1/cosh 𝑥 = sinh 𝑥.

(d) 1√
1−tanh2 𝑥

= 1√
(cosh2 𝑥)/(cosh2 𝑥)−(sinh2 𝑥)/(cosh2 𝑥)

= 1√
1/(cosh2 𝑥)

= 1
1/cosh 𝑥 = cosh 𝑥.

(e)

sinh′ 𝑥 =

(
𝑒𝑥 − 𝑒−𝑥

2

) ′
= cosh 𝑥, cosh′ 𝑥 =

(
𝑒𝑥 + 𝑒−𝑥

2

) ′
= sinh 𝑥.

By the quotient rule,

tanh′ 𝑥 =
sinh′ 𝑥 cosh 𝑥 − sinh 𝑥 cosh′ 𝑥

cosh2 𝑥
=

cosh 𝑥 cosh 𝑥 − sinh 𝑥 sinh 𝑥
cosh2 𝑥

=
1

cosh2 𝑥
.

Challenge 15 (a) First, 𝑎0 = 𝑒0 log 𝑎 = 𝑒0 = 1. Second,

𝑎𝑥 · 𝑎−𝑥 = 𝑒𝑥 log 𝑎 · 𝑒−𝑥 log 𝑎 = 𝑒𝑥 log 𝑎−𝑥 log 𝑎 = 𝑒0 = 1.

Third, 𝑎𝑥𝑎𝑦 = 𝑒𝑥 log 𝑎𝑒𝑦 log 𝑎 = 𝑒(𝑥+𝑦) log 𝑎 = 𝑎𝑥+𝑦 . Fourth,

(𝑎 · 𝑏)𝑥 = 𝑒𝑥 log(𝑎𝑏) = 𝑒𝑥 log 𝑎+𝑥 log 𝑏 = 𝑒𝑥 log 𝑎𝑒𝑥 log 𝑏 = 𝑎𝑥𝑏𝑥 .

(b) The function 𝑒𝑥 log 𝑎 is differentiable by the chain rule with

(𝑎𝑥)′ = (𝑒𝑥 log 𝑎)′ = 𝑒𝑥 log 𝑎 log 𝑎 = 𝑎𝑥 log 𝑎.

The antiderivative of 𝑎𝑥 is therefore
∫
𝑎𝑥 𝑑𝑥 = 𝑎𝑥

log 𝑎 + 𝑐, where 𝑐 is an arbitrary constant.

Challenge 16 By definition 𝑥𝑎 = 𝑒 𝑎 log 𝑥 , hence by the chain rule the function 𝑓 : 𝑥 ↦→ 𝑒 𝑎 log 𝑥 is
differentiable. The derivative is 𝑓 ′(𝑥) = 𝑎

𝑥 𝑒
𝑎 log 𝑥 = 𝑎𝑥𝑎

𝑥 = 𝑎𝑥𝑎𝑥−1 = 𝑎𝑥𝑎−1. The antiderivative
of 𝑥𝑎 is therefore

∫
𝑥𝑎 𝑑𝑥 = 𝑥𝑎+1

𝑎+1 + 𝑐, where 𝑐 is an arbitrary constant. Notice that 𝑎 cannot
equal −1 because we cannot divide by zero.
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Challenge 17 (a) By our sign convention for integrals,
∫ 1
𝛼

1
𝑥 𝑑𝑥 = −

∫ 𝛼

1
1
𝑥 𝑑𝑥 = − log 𝛼.1 Because

the logarithm function is unbounded from above and below, as we drop 𝛼 → 0, the
value of − log 𝛼 continues to increase without an upper bound to constrain it. This
shows us that

∫ 1
0

1
𝑥 𝑑𝑥 cannot exist.

(b) The function 𝑓 : 𝑥 ↦→ 1/𝑥2 is undefined for 𝑥 = 0 and so it is not continuous. We cannot
apply the fundamental theorem of calculus!

Challenge 18 (a) Yes to both.
(b) No to both.
(c) 𝛿1 and 𝛿3.
(d) Yes.
(e) Yes.

Challenge 19 (a) (∀𝛿 > 0)(∃𝜖 > 0)(∀𝑥 ∈ ℝ)
(
0 < |𝑥 − 𝑡| < 𝛿 =⇒ | 𝑓 (𝑥) − 𝑙| < 𝜖

)
.

(b) (∃𝜖 > 0)(∀𝛿(𝜖) > 0)(∃𝑥 ∈ ℝ)
(
0 < |𝑥 − 𝑡| < 𝛿(𝜖) =⇒ | 𝑓 (𝑥) − 𝑙| ≮ 𝜖

)
.

(c) The negation of the proposed definition is

(∃𝜖 > 0)(∀𝛿(𝜖) > 0)(∃𝑥 ∈ ℝ)
(
| 𝑓 (𝑥) − 𝑙| < 𝜖 =⇒ |𝑥 − 𝑡| ≥ 𝛿(𝜖)

)
.

Take 𝜖 to be any positive number and take 𝑥 = 𝛿(𝜖).

Challenge 20 (a) Immediate from L’Hospital’s Rule (Theorem 28).

(b)
[∫ 𝑥

𝑎
𝐶(𝑥 − 𝑎)𝑘 𝑑𝑡

]
/(𝑥 − 𝑎)𝑘 = 𝐶

∫ 𝑥

𝑎
𝑑𝑡 = 𝐶(𝑥 − 𝑎) → 0 as |𝑥 − 𝑎| → 0.

(c) Replace 𝑜(𝛼) with 𝛼 · 𝑜(1). The last equality holds because
(
𝛼2 · 𝑜(1)

)
/𝛼 = 𝑜(1) by the

product rule.

Challenge 21 The one critical point of 𝑥3 at the origin is neither a local maximum or minimum.
The one critical point of 𝑥4 at the origin is a local minimum.

Challenge 22 Answers given in the problem statement.

Challenge 23 Adapt the proofs for finite limits.

Challenge 24 (a) It suffices to take 𝛿(𝜖) := 𝜖2.
(b) Function 𝑓 has a limit 𝑙 from below at input 𝑡, if for each 𝜖 > 0, there is a 𝛿(𝜖) > 0 such

that each 𝑥 ∈ (𝑡 − 𝛿(𝜖), 𝑡) satisfies 𝑓 (𝑥) ∈
(
𝑙 − 𝜖, 𝑙 + 𝜖

)
.

(c) By assumption, for each 𝜖 > 0, there is a corresponding 𝛿(𝜖) > 0 value which applies
to both limits from above and below.

(d) By assumption, there are 𝛿+(𝜖) > 0 and 𝛿−(𝜖) > 0 from the limit from above and the
limit from below, respectively. Take 𝛿 to be their minimum.

Challenge 25 (a) See the proof of Rolle’s Theorem (Theorem 38).
1Notice that since 𝛼 < 1, this is a positive number.
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(b) For each 𝜖 > 0, we know there are 𝛿 𝑓 (𝜖) > 0 and 𝛿𝑔(𝜖) > 0 such that each 𝑥≠𝑡 with
|𝑥− 𝑡| < 𝛿 𝑓 (𝜖) satisfies | 𝑓 (𝑥)− 𝑙| < 𝜖 and such that each 𝑥≠𝑡 with |𝑥− 𝑡| < 𝛿𝑔(𝜖) satisfies
|𝑔(𝑥) − 𝑙| < 𝜖. Take 𝛿(𝜖) to be the minimum of 𝛿 𝑓 (𝜖) and 𝛿𝑔(𝜖). Applying the triangle
inequality to the hint gives |ℎ(𝑥) − 𝑙| < |𝑔(𝑥) − 𝑙 + 𝑙 − 𝑓 (𝑥)| + 𝜖 ≤ 3𝜖.

Challenge 26 Given 𝜖 > 0, continuity of 𝑓 at 𝑔(𝑡) gives a 𝛿 𝑓 (𝜖) > 0. Continuity of 𝑔 at 𝑡 in turn
gives a 𝛿𝑔

(
𝛿 𝑓 (𝜖)

)
> 0.

Challenge 27 For each open interval 𝐼𝑜 := (𝑝, 𝑞) containing 𝑓 (𝑡), the corresponding 𝜖 is the smaller
of 𝑓 (𝑡) − 𝑝, 𝑞 − 𝑓 (𝑡), from which we obtain an open interval 𝐼𝑖 of length 2𝛿(𝜖) around 𝑡.

Challenge 28 For 𝑡 > 0, if an open interval 𝐼𝑜 contains 1 but not 0, the open interval 𝐼𝑖 = (0,+∞)
suffices. Otherwise, open interval 𝐼𝑜 contains both 0 and 1, in which case the open interval
𝐼𝑖 = (−∞,+∞) works. The case for 𝑡 < 0 is similar. On the other hand, the function 𝑔 is not
continuous at 𝑡 = 0 because for the open interval 𝐼𝑜 = (−1, 1) each open interval 𝐼𝑖 containing
𝑡 = 0 will necessarily satisfy 𝑓 (𝐼𝑖) = {0, 1}.

Challenge 29 (a) Apply function 𝑔 to both sides.
(b) ℎ(𝑦) = ℎ

(
𝑓 (𝑥)

)
= 𝑥 = 𝑔

(
𝑓 (𝑥)

)
= 𝑔(𝑦).

(c) If 𝑔(𝑝) > 𝑔(𝑞) for 𝑝 < 𝑞, since 𝑓 is increasing 𝑓 ◦ 𝑔(𝑝) > 𝑓 ◦ 𝑔(𝑞), contradicting 𝑝 < 𝑞.
(d) If 𝑓 defined on an interval 𝐼 is strictly decreasing with inverse function 𝑔, then 𝑔 is also

strictly decreasing. To check, switch 𝑝 and 𝑞 in the answer of part (c).

Challenge 30 Replace the exponential function exp with the function 𝑔 and the logarithm function
log with the function 𝑓 . For part (c), apply the results to function − 𝑓 .

Challenge 31 Parts (a) through (d) are immediate from the Mean Value Theorem. For part (e),
apply part (b) to the function ℎ = 𝑔 − 𝑓 . For part (f), part (e) tells us that 𝛼(𝑥) − 𝛼(𝑎) ≤
𝑓 (𝑥) − 𝑓 (𝑎) and 𝑓 (𝑥) − 𝑓 (𝑎) ≤ 𝛽(𝑥) − 𝛽𝑎. The mean value inequality follows.

Challenge 32 (a) Take 𝑖 = 2 and 𝑘 = 1.

(b) 𝑓 ′(𝑥) = 2
𝑥3 𝑒
−1/𝑥2 .

(c) 𝑓 ′′(𝑥) =
[
− 6
𝑥4 + 2

𝑥3

]
𝑒−1/𝑥2 .

(d) Straightforward application of the well-ordering principle.
(e) Routine algebra.
(f)

lim
𝑥→0

����� 𝑓 (𝑗−1)(𝑥) −����𝑓 (𝑗−1)(0)
𝑥 − 0

����� = lim
𝑥→0

�����𝑃𝑗−1𝑒
−1/𝑥2

𝑥

����� ≤ lim
𝑥→0

�����𝑃𝑗−1𝑒
−1/𝑥

𝑥

����� ≤ lim
𝑦→∞

���� 𝑦𝑃𝑗−1

𝑒𝑦

���� = 0.
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𝐴†, 102
𝐴T, 101
𝐷6, 124
Im, 97
Re, 97(
𝑛
𝑘

)
, 25

∩, 31
◦, 23
�, 122
cos, 113
cosh, 52
∪, 31
∇ × 𝒇 , 154
det, 98
∇ · 𝒇 , 154
∅, 30
∃, 62
∀, 62
∇, 91
ℏ, 104
im, 126
=⇒ , 62
∈, 30
inf, 30
|□⟩, 86
∇2, 91
≤, 126
lim, 55, 57
↦→, 4
ℂ, 96
ℂ𝑛 , 128

𝔼𝑛 , 173
ℕ, 30
ℚ, 30
ℝ, 30
ℝ𝑛 , 88, 128
ℤ, 30
𝒞 𝑟 , 150
min, 58
∉, 30
𝜕, 91
𝜋, 45
\, 127
sgn, 157
sin, 113
sinh, 52√, 6
★, 153, 155
⊂, 31∑

, 15
sup, 30
tan, 113
tanh, 52
→, 16
𝑒, 51
𝑖, 96
𝑜(1), 18

Definition, 65
𝑜(𝑔), 66
𝑜𝛼(1), 17

Absolute Value, 17
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Antiderivative, 38
Argand Diagram, 99
Associativity, 25
Axiom, 14
Axis

𝑥, 10
𝑦, 10

Base, 5
Bias, 43
Binary Operation, 127
Binomial Coefficient, 25
Binomial Formula, 26
Born Rule, 172

Cauchy-Riemann Equations, 185
Chain Rule, 23, 25, 186
Change of Variables, 135
Charge Density, 164
Coefficient, 14
Completeness, 30
Complex Conjugate, 99
Conservative Force, 82
Constant Rule, 11, 20
Continuity

Definition, 57
Continuity Equation, 165
Continuous, 28
Coordinate System, 173
Coordinates

Polar, 133
Rectangular, 133

Cosine Law, 116
Coulomb’s Law, 107
Critical Point, 66
Cross Product, 155
Curl, 154
Curl Test, 168
Current Density, 165

De Moivre’s Formula, 115
Definite Integral, 38
Derivative, 17

Uniqueness, 19
Using Dual Numbers, 22

Determinant, 98, 140
Cofactor, 143

Laplace Expansion, 143
Differentiable

Infinitely, 79
Using Dual Numbers, 22

Differential Equation, 81
Dimension, 8
Dimensional Analysis, 8
Dimensionful, 44
Dimensionless Constant, 6
Divergence, 154
Dot Product, 173
Dual Number, 22

Energy
Conservation, 83
Kinetic, 82
Mechanical, 83
Potential, 82

Euclidean Space, 173
Euler’s Formula, 114
Euler’s Identity, 114
Exponential Function, 51
Exponentiation, 5
Exterior Derivative

𝑘-form, 154
0-form, 152
1-form, 152
2-form, 153
3-form, 153
4-form, 154

Field, 99, 128
Complex, 99

Form
𝑘-form, 152
0-form, 152
1-form, 152
2-form, 152
3-form, 152
Closed, 170
Exact, 170
Integration of, 156

Free Particle, 110
Function, 4

Absolute Value, 18, 23
Bĳective, 122
Binary, 127
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Bounded, 34
Codomain, 122
Complex Valued, 101
Composition, 25
Continuous, 28, 145
Cosine, 113
Differentiable, 17
Domain, 122
Even, 52
Injective, 72, 122
Inverse, 72
Isomorphism, 122
Odd, 52
Positive, 48
Real Valued, 101
relu, 27
Sine, 113
Strictly Positive, 57
Surjective, 122
Tangent, 113

Fundamental Theorem of Calculus
First, 37
Second, 39

Galilean Transformations, 175
Gamma Function, 132
Gauge

Invariance, 170
Transformation, 170

Gaussian Integral, 130
Gradient, 91
Group, 121

𝐺𝐿𝑛(ℝ), 123
𝑆𝐿2(ℝ), 123
𝑆𝑂(2), 122
𝑆3, 124
𝑈(1), 122
ℝ, 121
ℝ×, 123
Abelian, 121
Action, 123
General Linear, 123
Identity, 121
Inverse, 121
Isomorphic, 122
Non-Abelian, 125

Opposite, 122
Representation, 125
Special Linear, 123
Subgroup, 126
Symmetric, 124

Hamilton–Jacobi Equation, 109
Hamiltonian, 86

Quantum, 104
Time-Independent, 104

Harmonic Oscillator, 83
Heat Equation, 118, 165
Hodge Star, 155
Homogeneity, 24
Hooke’s Law, 83
Hydrogen Atom, 106
Hypotenuse, 44

Indefinite Integral, 38
Infimum, 30
Integer, 4
Integral, 37

Definite, 38
Improper, 131
Indefinite, 38

Integration by Parts, 40, 131
Interval, 31

Closed, 31
Finite, 31
Open, 31

Jacobian, 138
Joule, 5

Kernel, 123
Kiloton, 5
Kronecker delta, 120

L’Hospital’s Rule, 65, 77
Laplacian

Vector Field, 156
Leibniz Integral Rule, 147
Levi-Civita Symbol, 141
Limit

Above, 68
Below, 68
Definition, 57
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Product Rule, 59
Quotient Rule, 62
Sum Rule, 59
Uniqueness, 58

Linear Combination, 89
Linearity, 88
Little oh, 65
Local Maximum, 66
Local Minimum, 66
Logarithm Function, 49
Lorentz Transformations, 178
Lower Bound, 29

Greatest, 30

Mass, 81
Matrix, 89

Addition, 97
Adjugate, 144
Complex, 101
Conjugate Transpose, 102
Dimension, 89
Exponential, 102
Hermitian, 102
Identity, 94
Inverse, 98
Jacobian, 138
Logarithm, 102
Multiplication, 93
Orthogonal, 144
Permutation, 125
Real, 101
Transpose, 101
Unitary, 102
Upper-Triangular, 144
Vandermonde, 144
Zero, 94

Maxwell’s Equations, 167
Source-Free, 167

Mean Value Inequality, 76
Momentum, 82
Multiplicative Inverse, 98

Newton, 81
Newton’s Second Law, 81
Number

Complex, 96
Imaginary, 96

Natural, 4
Rational, 30
Real, 30

Partial Derivative, 91
Permutation, 124
Phase Space, 84
Planck Constant, Reduced, 104
Poincaré’s lemma, 170
Polynomial, 14

Vandermonde, 144
Potential

Scalar, 170
Vector, 170

Power Rule, 14, 53
Probability Current, 172
Probability Density, 172
Product Rule, 12, 20
Pythagorean Theorem, 44

Quadratic Formula, 129
Quotient Rule, 13, 21, 64

Radian, 112
Radius, 3
Rapidity, 177
Reciprocal Rule, 21, 64
Rectangle, 145

Closed, 145
Open, 145

Reference Frame, 173
Reference point, 82

Scalar, 87, 99, 128
Scalar Multiplication, 87
Schrödinger Equation, 104

One-dimensional, 105
Second Derivative Test, 66
Semicircle, 45
Separation of Variables, 118
Set, 30

Bounded, 30
Element, 30
Element of, 30
Empty, 30
Subset, 31

Slope, 43
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Solid of Revolution, 49
Square Root, 6
Substitution Rule, 41
Subtraction Rule, 11
Sum Rule, 11, 20
Summation Notation, 15
Superposition, 111
Superposition Principle, 111
Supremum, 30

Taylor
Expansion, 67
Polynomial, 42
Series, 67

Theorem
Boundedness, 71
Clairaut’s, 149
Divergence, 164
Extreme Value, 71
Fubini’s, 148
Generalized Mean Value, 77
Green’s, 160
Intermediate Value, 70
Kelvin-Stokes, 162
Mean Value, 75

Rolle’s, 74
Squeeze, 69
Taylor’s, 42, 66

Translation
Spatial, 84
Time, 85

Transposition, 125
Triangle Inequality, 23, 100

Unit Circle, 45
Upper Bound, 30

Least, 30

Vector, 86, 128
Concatenation, 89
Dimension, 86
Perpendicular, 173

Vector Field, 150
Vector Space, 128

Wave Equation, 110
Wavefunction, 111
Wedge Product, 151
Well-Ordering Principle, 14
Work, 81
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